Skip to contents

Poverty Probability Index (PPI) lookup table for Yemen

Usage

ppiYEM2009

Format

A data frame with 8 columns and 101 rows:

score

PPI score

nl100

National poverty line (100%)

nlFood

Food poverty line

extreme

USAID extreme poverty

ppp125

Below $1.25 per day purchasing power parity (2005)

ppp250

Below $2.50 per day purchasing power parity (2005)

ppp300

Below $3.00 per day purchasing power parity (2005)

ppp400

Below $4.00 per day purchasing power parity (2005)

Examples

  # Access Yemen PPI table
  ppiYEM2009
#>     score nl100 nlFood extreme ppp125 ppp250 ppp300 ppp400
#> 0       0  86.4   44.0    47.4   39.8   92.2   92.2  100.0
#> 1       1  86.4   44.0    47.4   39.8   92.2   92.2  100.0
#> 2       2  86.4   44.0    47.4   39.8   92.2   92.2  100.0
#> 3       3  86.4   44.0    47.4   39.8   92.2   92.2  100.0
#> 4       4  86.4   44.0    47.4   39.8   92.2   92.2  100.0
#> 5       5  60.8   29.4    35.1   25.3   81.1   90.5   95.8
#> 6       6  60.8   29.4    35.1   25.3   81.1   90.5   95.8
#> 7       7  60.8   29.4    35.1   25.3   81.1   90.5   95.8
#> 8       8  60.8   29.4    35.1   25.3   81.1   90.5   95.8
#> 9       9  60.8   29.4    35.1   25.3   81.1   90.5   95.8
#> 10     10  59.4   23.3    29.6   19.2   81.9   88.2   97.3
#> 11     11  59.4   23.3    29.6   19.2   81.9   88.2   97.3
#> 12     12  59.4   23.3    29.6   19.2   81.9   88.2   97.3
#> 13     13  59.4   23.3    29.6   19.2   81.9   88.2   97.3
#> 14     14  59.4   23.3    29.6   19.2   81.9   88.2   97.3
#> 15     15  47.6   21.6    29.2   16.4   70.6   84.0   94.5
#> 16     16  47.6   21.6    29.2   16.4   70.6   84.0   94.5
#> 17     17  47.6   21.6    29.2   16.4   70.6   84.0   94.5
#> 18     18  47.6   21.6    29.2   16.4   70.6   84.0   94.5
#> 19     19  47.6   21.6    29.2   16.4   70.6   84.0   94.5
#> 20     20  36.3   10.8    16.8    8.6   61.0   75.5   92.7
#> 21     21  36.3   10.8    16.8    8.6   61.0   75.5   92.7
#> 22     22  36.3   10.8    16.8    8.6   61.0   75.5   92.7
#> 23     23  36.3   10.8    16.8    8.6   61.0   75.5   92.7
#> 24     24  36.3   10.8    16.8    8.6   61.0   75.5   92.7
#> 25     25  32.8    8.0    15.1    7.0   59.5   74.4   87.2
#> 26     26  32.8    8.0    15.1    7.0   59.5   74.4   87.2
#> 27     27  32.8    8.0    15.1    7.0   59.5   74.4   87.2
#> 28     28  32.8    8.0    15.1    7.0   59.5   74.4   87.2
#> 29     29  32.8    8.0    15.1    7.0   59.5   74.4   87.2
#> 30     30  21.6    5.2    10.4    4.2   42.8   56.9   78.7
#> 31     31  21.6    5.2    10.4    4.2   42.8   56.9   78.7
#> 32     32  21.6    5.2    10.4    4.2   42.8   56.9   78.7
#> 33     33  21.6    5.2    10.4    4.2   42.8   56.9   78.7
#> 34     34  21.6    5.2    10.4    4.2   42.8   56.9   78.7
#> 35     35  19.5    5.3     9.1    5.1   37.3   52.5   73.7
#> 36     36  19.5    5.3     9.1    5.1   37.3   52.5   73.7
#> 37     37  19.5    5.3     9.1    5.1   37.3   52.5   73.7
#> 38     38  19.5    5.3     9.1    5.1   37.3   52.5   73.7
#> 39     39  19.5    5.3     9.1    5.1   37.3   52.5   73.7
#> 40     40  10.8    3.0     3.4    1.9   25.2   43.3   69.2
#> 41     41  10.8    3.0     3.4    1.9   25.2   43.3   69.2
#> 42     42  10.8    3.0     3.4    1.9   25.2   43.3   69.2
#> 43     43  10.8    3.0     3.4    1.9   25.2   43.3   69.2
#> 44     44  10.8    3.0     3.4    1.9   25.2   43.3   69.2
#> 45     45   6.8    1.0     1.5    1.0   20.1   33.1   52.6
#> 46     46   6.8    1.0     1.5    1.0   20.1   33.1   52.6
#> 47     47   6.8    1.0     1.5    1.0   20.1   33.1   52.6
#> 48     48   6.8    1.0     1.5    1.0   20.1   33.1   52.6
#> 49     49   6.8    1.0     1.5    1.0   20.1   33.1   52.6
#> 50     50   3.9    0.3     0.6    0.3   12.5   22.4   46.0
#> 51     51   3.9    0.3     0.6    0.3   12.5   22.4   46.0
#> 52     52   3.9    0.3     0.6    0.3   12.5   22.4   46.0
#> 53     53   3.9    0.3     0.6    0.3   12.5   22.4   46.0
#> 54     54   3.9    0.3     0.6    0.3   12.5   22.4   46.0
#> 55     55   4.4    1.0     1.6    1.0   17.9   26.8   45.8
#> 56     56   4.4    1.0     1.6    1.0   17.9   26.8   45.8
#> 57     57   4.4    1.0     1.6    1.0   17.9   26.8   45.8
#> 58     58   4.4    1.0     1.6    1.0   17.9   26.8   45.8
#> 59     59   4.4    1.0     1.6    1.0   17.9   26.8   45.8
#> 60     60   0.8    0.0     0.0    0.0    3.5    8.3   29.0
#> 61     61   0.8    0.0     0.0    0.0    3.5    8.3   29.0
#> 62     62   0.8    0.0     0.0    0.0    3.5    8.3   29.0
#> 63     63   0.8    0.0     0.0    0.0    3.5    8.3   29.0
#> 64     64   0.8    0.0     0.0    0.0    3.5    8.3   29.0
#> 65     65   0.1    0.0     0.1    0.0    2.3    5.7   20.1
#> 66     66   0.1    0.0     0.1    0.0    2.3    5.7   20.1
#> 67     67   0.1    0.0     0.1    0.0    2.3    5.7   20.1
#> 68     68   0.1    0.0     0.1    0.0    2.3    5.7   20.1
#> 69     69   0.1    0.0     0.1    0.0    2.3    5.7   20.1
#> 70     70   0.0    0.0     0.0    0.0    1.5    2.8    5.3
#> 71     71   0.0    0.0     0.0    0.0    1.5    2.8    5.3
#> 72     72   0.0    0.0     0.0    0.0    1.5    2.8    5.3
#> 73     73   0.0    0.0     0.0    0.0    1.5    2.8    5.3
#> 74     74   0.0    0.0     0.0    0.0    1.5    2.8    5.3
#> 75     75   0.0    0.0     0.0    0.0    0.0    0.0    2.8
#> 76     76   0.0    0.0     0.0    0.0    0.0    0.0    2.8
#> 77     77   0.0    0.0     0.0    0.0    0.0    0.0    2.8
#> 78     78   0.0    0.0     0.0    0.0    0.0    0.0    2.8
#> 79     79   0.0    0.0     0.0    0.0    0.0    0.0    2.8
#> 80     80   0.0    0.0     0.0    0.0    0.0    0.0    6.5
#> 81     81   0.0    0.0     0.0    0.0    0.0    0.0    6.5
#> 82     82   0.0    0.0     0.0    0.0    0.0    0.0    6.5
#> 83     83   0.0    0.0     0.0    0.0    0.0    0.0    6.5
#> 84     84   0.0    0.0     0.0    0.0    0.0    0.0    6.5
#> 85     85   0.0    0.0     0.0    0.0    0.0    4.0   11.5
#> 86     86   0.0    0.0     0.0    0.0    0.0    4.0   11.5
#> 87     87   0.0    0.0     0.0    0.0    0.0    4.0   11.5
#> 88     88   0.0    0.0     0.0    0.0    0.0    4.0   11.5
#> 89     89   0.0    0.0     0.0    0.0    0.0    4.0   11.5
#> 90     90   0.0    0.0     0.0    0.0    0.0    0.0    0.0
#> 91     91   0.0    0.0     0.0    0.0    0.0    0.0    0.0
#> 92     92   0.0    0.0     0.0    0.0    0.0    0.0    0.0
#> 93     93   0.0    0.0     0.0    0.0    0.0    0.0    0.0
#> 94     94   0.0    0.0     0.0    0.0    0.0    0.0    0.0
#> 95     95   0.0    0.0     0.0    0.0    0.0    0.0    0.0
#> 96     96   0.0    0.0     0.0    0.0    0.0    0.0    0.0
#> 97     97   0.0    0.0     0.0    0.0    0.0    0.0    0.0
#> 98     98   0.0    0.0     0.0    0.0    0.0    0.0    0.0
#> 99     99   0.0    0.0     0.0    0.0    0.0    0.0    0.0
#> 100   100   0.0    0.0     0.0    0.0    0.0    0.0    0.0

  # Given a specific PPI score (from 0 - 100), get the row of poverty
  # probabilities from PPI table it corresponds to
  ppiScore <- 50
  ppiYEM2009[ppiYEM2009$score == ppiScore, ]
#>    score nl100 nlFood extreme ppp125 ppp250 ppp300 ppp400
#> 50    50   3.9    0.3     0.6    0.3   12.5   22.4     46

  # Use subset() function to get the row of poverty probabilities corresponding
  # to specific PPI score
  ppiScore <- 50
  subset(ppiYEM2009, score == ppiScore)
#>    score nl100 nlFood extreme ppp125 ppp250 ppp300 ppp400
#> 50    50   3.9    0.3     0.6    0.3   12.5   22.4     46

  # Given a specific PPI score (from 0 - 100), get a poverty probability
  # based on a specific poverty definition. In this example, the national
  # poverty line definition
  ppiScore <- 50
  ppiYEM2009[ppiYEM2009$score == ppiScore, "nl100"]
#> [1] 3.9