Poverty Probability Index (PPI) lookup table for Uganda 2022
Format
A data frame with 21 columns and 100 rows:
scorePPI score
ppp100Below $1.00 per day purchasing power parity (2011)
ppp190Below $1.90 per day purchasing power parity (2011)
ppp320Below $3.20 per day purchasing power parity (2011)
ppp550Below $5.50 per day purchasing power parity (2011)
ppp800Below $8.00 per day purchasing power parity (2011)
ppp1100Below $11.00 per day purchasing power parity (2011)
ppp1500Below $15.00 per day purchasing power parity (2011)
ppp2170Below $21.70 per day purchasing power parity (2011)
percentile20Below 20th percentile poverty line
percentile40Below 40th percentile poverty line
percentile60Below 50th percentile poverty line
percentile80Below 60th percentile poverty line
Examples
# Access Uganda PPI table
ppiUGA2022
#> # A tibble: 100 × 13
#> score ppp100 ppp190 ppp320 ppp550 ppp800 ppp1100 ppp1500 ppp2170 percentile20
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 66.0 89.8 96.1 99.1 99.6 99.8 99.9 99.9 79.7
#> 2 2 63.9 89.1 95.9 99.1 99.6 99.7 99.8 99.9 78.5
#> 3 3 61.7 88.5 95.6 99.0 99.6 99.7 99.8 99.9 77.2
#> 4 4 59.5 87.8 95.4 99.0 99.6 99.7 99.8 99.9 75.9
#> 5 5 57.3 87.0 95.2 98.9 99.5 99.7 99.8 99.9 74.6
#> 6 6 55.0 86.2 94.9 98.8 99.5 99.7 99.8 99.9 73.2
#> 7 7 52.7 85.4 94.6 98.8 99.5 99.7 99.8 99.9 71.8
#> 8 8 50.4 84.6 94.3 98.7 99.5 99.7 99.8 99.9 70.3
#> 9 9 48.0 83.7 94.0 98.6 99.4 99.6 99.8 99.9 68.8
#> 10 10 45.7 82.7 93.7 98.5 99.4 99.6 99.8 99.9 67.2
#> # ℹ 90 more rows
#> # ℹ 3 more variables: percentile40 <dbl>, percentile60 <dbl>,
#> # percentile80 <dbl>
# Given a specific PPI score (from 0 - 100), get the row of poverty
# probabilities from PPI table it corresponds to
ppiScore <- 50
ppiUGA2022[ppiUGA2022$score == ppiScore, ]
#> # A tibble: 1 × 13
#> score ppp100 ppp190 ppp320 ppp550 ppp800 ppp1100 ppp1500 ppp2170 percentile20
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 50 2.02 24.6 61.4 86.8 94.3 96.9 98.3 99.4 10.2
#> # ℹ 3 more variables: percentile40 <dbl>, percentile60 <dbl>,
#> # percentile80 <dbl>
# Use subset() function to get the row of poverty probabilities corresponding
# to specific PPI score
ppiScore <- 50
subset(ppiUGA2022, score == ppiScore)
#> # A tibble: 1 × 13
#> score ppp100 ppp190 ppp320 ppp550 ppp800 ppp1100 ppp1500 ppp2170 percentile20
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 50 2.02 24.6 61.4 86.8 94.3 96.9 98.3 99.4 10.2
#> # ℹ 3 more variables: percentile40 <dbl>, percentile60 <dbl>,
#> # percentile80 <dbl>
# Given a specific PPI score (from 0 - 100), get a poverty probability
# based on a specific poverty definition. In this example, the purchasing
# power parity at $1.00
ppiScore <- 50
ppiUGA2022[ppiUGA2022$score == ppiScore, "ppp100"]
#> # A tibble: 1 × 1
#> ppp100
#> <dbl>
#> 1 2.02
