Poverty Probability Index (PPI) lookup table for Uganda
Format
A data frame with 13 columns and 101 rows:
score
PPI score
nl100
National poverty line (100%)
nl150
National poverty line (150%)
nl200
National poverty line (200%)
half100
Poorest half below 100% national
ppp125
Below $1.25 per day purchasing power parity (2005)
ppp200
Below $2.00 per day purchasing power parity (2005)
ppp250
Below $2.50 per day purchasing power parity (2005)
ppp400
Below $4.00 per day purchasing power parity (2005)
ppp500
Below $5.00 per day purchasing power parity (2005)
ppp844
Below $8.44 per day purchasing power parity (2005)
ppp190
Below $1.90 per day purchasing power parity (2011)
ppp310
Below $3.10 per day purchasing power parity (2011)
Examples
# Access Uganda PPI table
ppiUGA2015
#> score nl100 nl150 nl200 half100 ppp125 ppp200 ppp250 ppp400 ppp500 ppp844
#> 0 0 87.3 97.3 99.2 70.8 96.7 99.4 99.7 100.0 100.0 100.0
#> 1 1 87.3 97.3 99.2 70.8 96.7 99.4 99.7 100.0 100.0 100.0
#> 2 2 87.3 97.3 99.2 70.8 96.7 99.4 99.7 100.0 100.0 100.0
#> 3 3 87.3 97.3 99.2 70.8 96.7 99.4 99.7 100.0 100.0 100.0
#> 4 4 87.3 97.3 99.2 70.8 96.7 99.4 99.7 100.0 100.0 100.0
#> 5 5 79.0 94.3 97.9 53.1 92.1 98.4 99.5 100.0 100.0 100.0
#> 6 6 79.0 94.3 97.9 53.1 92.1 98.4 99.5 100.0 100.0 100.0
#> 7 7 79.0 94.3 97.9 53.1 92.1 98.4 99.5 100.0 100.0 100.0
#> 8 8 79.0 94.3 97.9 53.1 92.1 98.4 99.5 100.0 100.0 100.0
#> 9 9 79.0 94.3 97.9 53.1 92.1 98.4 99.5 100.0 100.0 100.0
#> 10 10 58.7 82.3 93.6 31.1 76.0 94.2 98.3 99.8 100.0 100.0
#> 11 11 58.7 82.3 93.6 31.1 76.0 94.2 98.3 99.8 100.0 100.0
#> 12 12 58.7 82.3 93.6 31.1 76.0 94.2 98.3 99.8 100.0 100.0
#> 13 13 58.7 82.3 93.6 31.1 76.0 94.2 98.3 99.8 100.0 100.0
#> 14 14 58.7 82.3 93.6 31.1 76.0 94.2 98.3 99.8 100.0 100.0
#> 15 15 39.9 75.3 89.2 22.1 65.3 91.5 95.0 99.5 100.0 100.0
#> 16 16 39.9 75.3 89.2 22.1 65.3 91.5 95.0 99.5 100.0 100.0
#> 17 17 39.9 75.3 89.2 22.1 65.3 91.5 95.0 99.5 100.0 100.0
#> 18 18 39.9 75.3 89.2 22.1 65.3 91.5 95.0 99.5 100.0 100.0
#> 19 19 39.9 75.3 89.2 22.1 65.3 91.5 95.0 99.5 100.0 100.0
#> 20 20 30.4 72.0 88.6 11.7 58.4 90.4 95.0 99.0 99.9 100.0
#> 21 21 30.4 72.0 88.6 11.7 58.4 90.4 95.0 99.0 99.9 100.0
#> 22 22 30.4 72.0 88.6 11.7 58.4 90.4 95.0 99.0 99.9 100.0
#> 23 23 30.4 72.0 88.6 11.7 58.4 90.4 95.0 99.0 99.9 100.0
#> 24 24 30.4 72.0 88.6 11.7 58.4 90.4 95.0 99.0 99.9 100.0
#> 25 25 23.0 59.2 80.1 7.4 45.3 82.2 92.9 98.8 99.6 100.0
#> 26 26 23.0 59.2 80.1 7.4 45.3 82.2 92.9 98.8 99.6 100.0
#> 27 27 23.0 59.2 80.1 7.4 45.3 82.2 92.9 98.8 99.6 100.0
#> 28 28 23.0 59.2 80.1 7.4 45.3 82.2 92.9 98.8 99.6 100.0
#> 29 29 23.0 59.2 80.1 7.4 45.3 82.2 92.9 98.8 99.6 100.0
#> 30 30 10.0 37.3 66.9 3.9 27.9 66.9 82.6 95.4 99.0 99.8
#> 31 31 10.0 37.3 66.9 3.9 27.9 66.9 82.6 95.4 99.0 99.8
#> 32 32 10.0 37.3 66.9 3.9 27.9 66.9 82.6 95.4 99.0 99.8
#> 33 33 10.0 37.3 66.9 3.9 27.9 66.9 82.6 95.4 99.0 99.8
#> 34 34 10.0 37.3 66.9 3.9 27.9 66.9 82.6 95.4 99.0 99.8
#> 35 35 7.0 32.5 60.3 2.1 23.9 60.5 77.2 93.1 97.2 99.4
#> 36 36 7.0 32.5 60.3 2.1 23.9 60.5 77.2 93.1 97.2 99.4
#> 37 37 7.0 32.5 60.3 2.1 23.9 60.5 77.2 93.1 97.2 99.4
#> 38 38 7.0 32.5 60.3 2.1 23.9 60.5 77.2 93.1 97.2 99.4
#> 39 39 7.0 32.5 60.3 2.1 23.9 60.5 77.2 93.1 97.2 99.4
#> 40 40 6.3 28.7 54.7 2.1 20.1 56.6 71.5 91.6 95.0 99.1
#> 41 41 6.3 28.7 54.7 2.1 20.1 56.6 71.5 91.6 95.0 99.1
#> 42 42 6.3 28.7 54.7 2.1 20.1 56.6 71.5 91.6 95.0 99.1
#> 43 43 6.3 28.7 54.7 2.1 20.1 56.6 71.5 91.6 95.0 99.1
#> 44 44 6.3 28.7 54.7 2.1 20.1 56.6 71.5 91.6 95.0 99.1
#> 45 45 3.0 21.4 43.3 1.1 10.9 45.7 60.0 81.4 89.2 98.8
#> 46 46 3.0 21.4 43.3 1.1 10.9 45.7 60.0 81.4 89.2 98.8
#> 47 47 3.0 21.4 43.3 1.1 10.9 45.7 60.0 81.4 89.2 98.8
#> 48 48 3.0 21.4 43.3 1.1 10.9 45.7 60.0 81.4 89.2 98.8
#> 49 49 3.0 21.4 43.3 1.1 10.9 45.7 60.0 81.4 89.2 98.8
#> 50 50 1.6 10.7 28.9 0.4 4.9 29.3 45.3 75.0 85.7 96.1
#> 51 51 1.6 10.7 28.9 0.4 4.9 29.3 45.3 75.0 85.7 96.1
#> 52 52 1.6 10.7 28.9 0.4 4.9 29.3 45.3 75.0 85.7 96.1
#> 53 53 1.6 10.7 28.9 0.4 4.9 29.3 45.3 75.0 85.7 96.1
#> 54 54 1.6 10.7 28.9 0.4 4.9 29.3 45.3 75.0 85.7 96.1
#> 55 55 0.5 5.4 16.0 0.2 3.1 19.5 34.2 65.1 73.9 91.8
#> 56 56 0.5 5.4 16.0 0.2 3.1 19.5 34.2 65.1 73.9 91.8
#> 57 57 0.5 5.4 16.0 0.2 3.1 19.5 34.2 65.1 73.9 91.8
#> 58 58 0.5 5.4 16.0 0.2 3.1 19.5 34.2 65.1 73.9 91.8
#> 59 59 0.5 5.4 16.0 0.2 3.1 19.5 34.2 65.1 73.9 91.8
#> 60 60 0.4 2.4 10.8 0.0 0.3 11.1 21.6 57.4 69.1 90.3
#> 61 61 0.4 2.4 10.8 0.0 0.3 11.1 21.6 57.4 69.1 90.3
#> 62 62 0.4 2.4 10.8 0.0 0.3 11.1 21.6 57.4 69.1 90.3
#> 63 63 0.4 2.4 10.8 0.0 0.3 11.1 21.6 57.4 69.1 90.3
#> 64 64 0.4 2.4 10.8 0.0 0.3 11.1 21.6 57.4 69.1 90.3
#> 65 65 0.4 1.0 6.5 0.0 0.0 3.0 10.5 37.7 59.1 86.3
#> 66 66 0.4 1.0 6.5 0.0 0.0 3.0 10.5 37.7 59.1 86.3
#> 67 67 0.4 1.0 6.5 0.0 0.0 3.0 10.5 37.7 59.1 86.3
#> 68 68 0.4 1.0 6.5 0.0 0.0 3.0 10.5 37.7 59.1 86.3
#> 69 69 0.4 1.0 6.5 0.0 0.0 3.0 10.5 37.7 59.1 86.3
#> 70 70 0.0 0.6 3.6 0.0 0.0 0.8 4.9 27.9 40.9 72.3
#> 71 71 0.0 0.6 3.6 0.0 0.0 0.8 4.9 27.9 40.9 72.3
#> 72 72 0.0 0.6 3.6 0.0 0.0 0.8 4.9 27.9 40.9 72.3
#> 73 73 0.0 0.6 3.6 0.0 0.0 0.8 4.9 27.9 40.9 72.3
#> 74 74 0.0 0.6 3.6 0.0 0.0 0.8 4.9 27.9 40.9 72.3
#> 75 75 0.0 0.0 1.7 0.0 0.0 0.0 2.7 17.9 31.3 69.5
#> 76 76 0.0 0.0 1.7 0.0 0.0 0.0 2.7 17.9 31.3 69.5
#> 77 77 0.0 0.0 1.7 0.0 0.0 0.0 2.7 17.9 31.3 69.5
#> 78 78 0.0 0.0 1.7 0.0 0.0 0.0 2.7 17.9 31.3 69.5
#> 79 79 0.0 0.0 1.7 0.0 0.0 0.0 2.7 17.9 31.3 69.5
#> 80 80 0.0 0.0 1.6 0.0 0.0 0.0 2.6 8.9 27.9 52.8
#> 81 81 0.0 0.0 1.6 0.0 0.0 0.0 2.6 8.9 27.9 52.8
#> 82 82 0.0 0.0 1.6 0.0 0.0 0.0 2.6 8.9 27.9 52.8
#> 83 83 0.0 0.0 1.6 0.0 0.0 0.0 2.6 8.9 27.9 52.8
#> 84 84 0.0 0.0 1.6 0.0 0.0 0.0 2.6 8.9 27.9 52.8
#> 85 85 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.5 12.3 41.3
#> 86 86 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.5 12.3 41.3
#> 87 87 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.5 12.3 41.3
#> 88 88 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.5 12.3 41.3
#> 89 89 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.5 12.3 41.3
#> 90 90 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 36.3
#> 91 91 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 36.3
#> 92 92 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 36.3
#> 93 93 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 36.3
#> 94 94 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 36.3
#> 95 95 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 36.3
#> 96 96 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 36.3
#> 97 97 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 36.3
#> 98 98 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 36.3
#> 99 99 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 36.3
#> 100 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 36.3
#> ppp190 ppp310
#> 0 96.7 99.4
#> 1 96.7 99.4
#> 2 96.7 99.4
#> 3 96.7 99.4
#> 4 96.7 99.4
#> 5 92.5 98.7
#> 6 92.5 98.7
#> 7 92.5 98.7
#> 8 92.5 98.7
#> 9 92.5 98.7
#> 10 81.1 96.6
#> 11 81.1 96.6
#> 12 81.1 96.6
#> 13 81.1 96.6
#> 14 81.1 96.6
#> 15 73.5 93.2
#> 16 73.5 93.2
#> 17 73.5 93.2
#> 18 73.5 93.2
#> 19 73.5 93.2
#> 20 68.3 92.6
#> 21 68.3 92.6
#> 22 68.3 92.6
#> 23 68.3 92.6
#> 24 68.3 92.6
#> 25 54.5 88.1
#> 26 54.5 88.1
#> 27 54.5 88.1
#> 28 54.5 88.1
#> 29 54.5 88.1
#> 30 37.5 76.7
#> 31 37.5 76.7
#> 32 37.5 76.7
#> 33 37.5 76.7
#> 34 37.5 76.7
#> 35 29.7 70.7
#> 36 29.7 70.7
#> 37 29.7 70.7
#> 38 29.7 70.7
#> 39 29.7 70.7
#> 40 26.0 63.5
#> 41 26.0 63.5
#> 42 26.0 63.5
#> 43 26.0 63.5
#> 44 26.0 63.5
#> 45 16.7 51.6
#> 46 16.7 51.6
#> 47 16.7 51.6
#> 48 16.7 51.6
#> 49 16.7 51.6
#> 50 8.1 36.1
#> 51 8.1 36.1
#> 52 8.1 36.1
#> 53 8.1 36.1
#> 54 8.1 36.1
#> 55 4.0 27.9
#> 56 4.0 27.9
#> 57 4.0 27.9
#> 58 4.0 27.9
#> 59 4.0 27.9
#> 60 0.6 17.2
#> 61 0.6 17.2
#> 62 0.6 17.2
#> 63 0.6 17.2
#> 64 0.6 17.2
#> 65 0.4 6.4
#> 66 0.4 6.4
#> 67 0.4 6.4
#> 68 0.4 6.4
#> 69 0.4 6.4
#> 70 0.0 2.1
#> 71 0.0 2.1
#> 72 0.0 2.1
#> 73 0.0 2.1
#> 74 0.0 2.1
#> 75 0.0 0.5
#> 76 0.0 0.5
#> 77 0.0 0.5
#> 78 0.0 0.5
#> 79 0.0 0.5
#> 80 0.0 0.5
#> 81 0.0 0.5
#> 82 0.0 0.5
#> 83 0.0 0.5
#> 84 0.0 0.5
#> 85 0.0 0.0
#> 86 0.0 0.0
#> 87 0.0 0.0
#> 88 0.0 0.0
#> 89 0.0 0.0
#> 90 0.0 0.0
#> 91 0.0 0.0
#> 92 0.0 0.0
#> 93 0.0 0.0
#> 94 0.0 0.0
#> 95 0.0 0.0
#> 96 0.0 0.0
#> 97 0.0 0.0
#> 98 0.0 0.0
#> 99 0.0 0.0
#> 100 0.0 0.0
# Given a specific PPI score (from 0 - 100), get the row of poverty
# probabilities from PPI table it corresponds to
ppiScore <- 50
ppiUGA2015[ppiUGA2015$score == ppiScore, ]
#> score nl100 nl150 nl200 half100 ppp125 ppp200 ppp250 ppp400 ppp500 ppp844
#> 50 50 1.6 10.7 28.9 0.4 4.9 29.3 45.3 75 85.7 96.1
#> ppp190 ppp310
#> 50 8.1 36.1
# Use subset() function to get the row of poverty probabilities corresponding
# to specific PPI score
ppiScore <- 50
subset(ppiUGA2015, score == ppiScore)
#> score nl100 nl150 nl200 half100 ppp125 ppp200 ppp250 ppp400 ppp500 ppp844
#> 50 50 1.6 10.7 28.9 0.4 4.9 29.3 45.3 75 85.7 96.1
#> ppp190 ppp310
#> 50 8.1 36.1
# Given a specific PPI score (from 0 - 100), get a poverty probability
# based on a specific poverty definition. In this example, the national
# poverty line definition
ppiScore <- 50
ppiUGA2015[ppiUGA2015$score == ppiScore, "nl100"]
#> [1] 1.6