Poverty Probability Index (PPI) lookup table for Tanzania 2022
Format
A data frame with 21 columns and 100 rows:
scorePPI score
nl_upperNational upper poverty line
nl_lowerNational lower poverty line
extremeExtreme poverty line
nl150National poverty line (150%)
nl200National poverty line (200%)
ppp100Below $1.00 per day purchasing power parity (2011)
ppp190Below $1.90 per day purchasing power parity (2011)
ppp320Below $3.20 per day purchasing power parity (2011)
ppp550Below $5.50 per day purchasing power parity (2011)
ppp800Below $8.00 per day purchasing power parity (2011)
ppp1100Below $11.00 per day purchasing power parity (2011)
ppp1500Below $15.00 per day purchasing power parity (2011)
ppp2170Below $21.70 per day purchasing power parity (2011)
ppp125Below $1.25 per day purchasing power parity (2005)
ppp250Below $2.50 per day purchasing power parity (2005)
ppp500Below $5.00 per day purchasing power parity (2005)
percentile20Below 20th percentile poverty line
percentile40Below 40th percentile poverty line
percentile60Below 50th percentile poverty line
percentile80Below 60th percentile poverty line
Examples
# Access Tanzania PPI table
ppiTZA2022
#> # A tibble: 100 × 21
#> score nl_upper nl_lower extreme nl150 nl200 ppp100 ppp190 ppp320 ppp550
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 87.8 85.3 59.7 97.2 98.7 61.1 95.1 98.7 99.7
#> 2 2 86.9 84.2 57.4 97.0 98.6 58.9 94.7 98.6 99.7
#> 3 3 85.9 83.1 55.1 96.8 98.6 56.8 94.3 98.5 99.7
#> 4 4 85.0 81.8 52.7 96.5 98.4 54.6 93.8 98.4 99.7
#> 5 5 83.9 80.5 50.4 96.3 98.3 52.3 93.4 98.3 99.7
#> 6 6 82.8 79.2 48.1 96.0 98.2 50.1 92.8 98.2 99.6
#> 7 7 81.7 77.8 45.7 95.7 98.1 47.9 92.3 98.0 99.6
#> 8 8 80.4 76.3 43.4 95.3 98.0 45.7 91.7 97.9 99.6
#> 9 9 79.2 74.7 41.1 95.0 97.8 43.5 91.0 97.8 99.6
#> 10 10 77.8 73.1 38.9 94.6 97.7 41.3 90.3 97.6 99.5
#> # ℹ 90 more rows
#> # ℹ 11 more variables: ppp800 <dbl>, ppp1100 <dbl>, ppp1500 <dbl>,
#> # ppp2170 <dbl>, ppp125 <dbl>, ppp250 <dbl>, ppp500 <dbl>,
#> # percentile20 <dbl>, percentile40 <dbl>, percentile60 <dbl>,
#> # percentile80 <dbl>
# Given a specific PPI score (from 0 - 100), get the row of poverty
# probabilities from PPI table it corresponds to
ppiScore <- 50
ppiTZA2022[ppiTZA2022$score == ppiScore, ]
#> # A tibble: 1 × 21
#> score nl_upper nl_lower extreme nl150 nl200 ppp100 ppp190 ppp320 ppp550 ppp800
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 50 12.8 8.41 1.46 44.6 72.3 1.94 26.2 69.9 92.6 96.4
#> # ℹ 10 more variables: ppp1100 <dbl>, ppp1500 <dbl>, ppp2170 <dbl>,
#> # ppp125 <dbl>, ppp250 <dbl>, ppp500 <dbl>, percentile20 <dbl>,
#> # percentile40 <dbl>, percentile60 <dbl>, percentile80 <dbl>
# Use subset() function to get the row of poverty probabilities corresponding
# to specific PPI score
ppiScore <- 50
subset(ppiTZA2022, score == ppiScore)
#> # A tibble: 1 × 21
#> score nl_upper nl_lower extreme nl150 nl200 ppp100 ppp190 ppp320 ppp550 ppp800
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 50 12.8 8.41 1.46 44.6 72.3 1.94 26.2 69.9 92.6 96.4
#> # ℹ 10 more variables: ppp1100 <dbl>, ppp1500 <dbl>, ppp2170 <dbl>,
#> # ppp125 <dbl>, ppp250 <dbl>, ppp500 <dbl>, percentile20 <dbl>,
#> # percentile40 <dbl>, percentile60 <dbl>, percentile80 <dbl>
# Given a specific PPI score (from 0 - 100), get a poverty probability
# based on a specific poverty definition. In this example, the USAID
# extreme poverty definition
ppiScore <- 50
ppiTZA2022[ppiTZA2022$score == ppiScore, "extreme"]
#> # A tibble: 1 × 1
#> extreme
#> <dbl>
#> 1 1.46
