Skip to contents

Poverty Probability Index (PPI) lookup table for Timor Leste

Usage

ppiTLS2013

Format

A data frame with 8 columns and 101 rows:

score

PPI score

nl100

National lower poverty line (100%)

nu100

National upper poverty line (100%)

nu150

National upper poverty line (150%)

nu200

National upper poverty line (200%)

extreme

USAID extreme poverty

ppp125

Below $1.25 per day purchasing power parity (2005)

ppp250

Below $2.50 per day purchasing power parity (2005)

Examples

  # Access Timor Leste PPI table
  ppiTLS2013
#>     score nl100 nu100 nu150 nu200 extreme ppp125 ppp250
#> 0       0 100.0 100.0 100.0 100.0   100.0  100.0  100.0
#> 1       1 100.0 100.0 100.0 100.0   100.0  100.0  100.0
#> 2       2 100.0 100.0 100.0 100.0   100.0  100.0  100.0
#> 3       3 100.0 100.0 100.0 100.0   100.0  100.0  100.0
#> 4       4 100.0 100.0 100.0 100.0   100.0  100.0  100.0
#> 5       5 100.0 100.0 100.0 100.0    88.6  100.0  100.0
#> 6       6 100.0 100.0 100.0 100.0    88.6  100.0  100.0
#> 7       7 100.0 100.0 100.0 100.0    88.6  100.0  100.0
#> 8       8 100.0 100.0 100.0 100.0    88.6  100.0  100.0
#> 9       9 100.0 100.0 100.0 100.0    88.6  100.0  100.0
#> 10     10  70.5  93.1 100.0 100.0    64.3   70.5  100.0
#> 11     11  70.5  93.1 100.0 100.0    64.3   70.5  100.0
#> 12     12  70.5  93.1 100.0 100.0    64.3   70.5  100.0
#> 13     13  70.5  93.1 100.0 100.0    64.3   70.5  100.0
#> 14     14  70.5  93.1 100.0 100.0    64.3   70.5  100.0
#> 15     15  78.3  93.1  99.5 100.0    57.7   73.8  100.0
#> 16     16  78.3  93.1  99.5 100.0    57.7   73.8  100.0
#> 17     17  78.3  93.1  99.5 100.0    57.7   73.8  100.0
#> 18     18  78.3  93.1  99.5 100.0    57.7   73.8  100.0
#> 19     19  78.3  93.1  99.5 100.0    57.7   73.8  100.0
#> 20     20  64.7  82.6  98.8 100.0    54.0   61.4   99.9
#> 21     21  64.7  82.6  98.8 100.0    54.0   61.4   99.9
#> 22     22  64.7  82.6  98.8 100.0    54.0   61.4   99.9
#> 23     23  64.7  82.6  98.8 100.0    54.0   61.4   99.9
#> 24     24  64.7  82.6  98.8 100.0    54.0   61.4   99.9
#> 25     25  57.0  78.5  98.2  99.0    41.9   52.4   98.9
#> 26     26  57.0  78.5  98.2  99.0    41.9   52.4   98.9
#> 27     27  57.0  78.5  98.2  99.0    41.9   52.4   98.9
#> 28     28  57.0  78.5  98.2  99.0    41.9   52.4   98.9
#> 29     29  57.0  78.5  98.2  99.0    41.9   52.4   98.9
#> 30     30  37.9  61.1  89.7  96.1    25.5   38.0   92.8
#> 31     31  37.9  61.1  89.7  96.1    25.5   38.0   92.8
#> 32     32  37.9  61.1  89.7  96.1    25.5   38.0   92.8
#> 33     33  37.9  61.1  89.7  96.1    25.5   38.0   92.8
#> 34     34  37.9  61.1  89.7  96.1    25.5   38.0   92.8
#> 35     35  31.1  51.5  84.2  94.2    17.5   25.0   87.2
#> 36     36  31.1  51.5  84.2  94.2    17.5   25.0   87.2
#> 37     37  31.1  51.5  84.2  94.2    17.5   25.0   87.2
#> 38     38  31.1  51.5  84.2  94.2    17.5   25.0   87.2
#> 39     39  31.1  51.5  84.2  94.2    17.5   25.0   87.2
#> 40     40   9.5  27.4  75.0  92.4     3.8    8.8   80.3
#> 41     41   9.5  27.4  75.0  92.4     3.8    8.8   80.3
#> 42     42   9.5  27.4  75.0  92.4     3.8    8.8   80.3
#> 43     43   9.5  27.4  75.0  92.4     3.8    8.8   80.3
#> 44     44   9.5  27.4  75.0  92.4     3.8    8.8   80.3
#> 45     45   9.2  23.4  59.7  84.9     4.1    8.1   69.7
#> 46     46   9.2  23.4  59.7  84.9     4.1    8.1   69.7
#> 47     47   9.2  23.4  59.7  84.9     4.1    8.1   69.7
#> 48     48   9.2  23.4  59.7  84.9     4.1    8.1   69.7
#> 49     49   9.2  23.4  59.7  84.9     4.1    8.1   69.7
#> 50     50   2.9   8.6  52.4  78.0     1.4    2.7   61.6
#> 51     51   2.9   8.6  52.4  78.0     1.4    2.7   61.6
#> 52     52   2.9   8.6  52.4  78.0     1.4    2.7   61.6
#> 53     53   2.9   8.6  52.4  78.0     1.4    2.7   61.6
#> 54     54   2.9   8.6  52.4  78.0     1.4    2.7   61.6
#> 55     55   5.3   9.5  33.9  57.2     1.9    4.7   43.5
#> 56     56   5.3   9.5  33.9  57.2     1.9    4.7   43.5
#> 57     57   5.3   9.5  33.9  57.2     1.9    4.7   43.5
#> 58     58   5.3   9.5  33.9  57.2     1.9    4.7   43.5
#> 59     59   5.3   9.5  33.9  57.2     1.9    4.7   43.5
#> 60     60   2.2   4.4  20.6  54.7     1.7    3.9   24.4
#> 61     61   2.2   4.4  20.6  54.7     1.7    3.9   24.4
#> 62     62   2.2   4.4  20.6  54.7     1.7    3.9   24.4
#> 63     63   2.2   4.4  20.6  54.7     1.7    3.9   24.4
#> 64     64   2.2   4.4  20.6  54.7     1.7    3.9   24.4
#> 65     65   0.0   0.1  17.4  56.2     0.0    0.0   31.6
#> 66     66   0.0   0.1  17.4  56.2     0.0    0.0   31.6
#> 67     67   0.0   0.1  17.4  56.2     0.0    0.0   31.6
#> 68     68   0.0   0.1  17.4  56.2     0.0    0.0   31.6
#> 69     69   0.0   0.1  17.4  56.2     0.0    0.0   31.6
#> 70     70   0.0   0.0   0.0  19.5     0.0    0.0    0.0
#> 71     71   0.0   0.0   0.0  19.5     0.0    0.0    0.0
#> 72     72   0.0   0.0   0.0  19.5     0.0    0.0    0.0
#> 73     73   0.0   0.0   0.0  19.5     0.0    0.0    0.0
#> 74     74   0.0   0.0   0.0  19.5     0.0    0.0    0.0
#> 75     75   0.0   0.0   0.0  52.9     0.0    0.0    0.0
#> 76     76   0.0   0.0   0.0  52.9     0.0    0.0    0.0
#> 77     77   0.0   0.0   0.0  52.9     0.0    0.0    0.0
#> 78     78   0.0   0.0   0.0  52.9     0.0    0.0    0.0
#> 79     79   0.0   0.0   0.0  52.9     0.0    0.0    0.0
#> 80     80   0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 81     81   0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 82     82   0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 83     83   0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 84     84   0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 85     85   0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 86     86   0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 87     87   0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 88     88   0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 89     89   0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 90     90   0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 91     91   0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 92     92   0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 93     93   0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 94     94   0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 95     95   0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 96     96   0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 97     97   0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 98     98   0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 99     99   0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 100   100   0.0   0.0   0.0   0.0     0.0    0.0    0.0

  # Given a specific PPI score (from 0 - 100), get the row of poverty
  # probabilities from PPI table it corresponds to
  ppiScore <- 50
  ppiTLS2013[ppiTLS2013$score == ppiScore, ]
#>    score nl100 nu100 nu150 nu200 extreme ppp125 ppp250
#> 50    50   2.9   8.6  52.4    78     1.4    2.7   61.6

  # Use subset() function to get the row of poverty probabilities corresponding
  # to specific PPI score
  ppiScore <- 50
  subset(ppiTLS2013, score == ppiScore)
#>    score nl100 nu100 nu150 nu200 extreme ppp125 ppp250
#> 50    50   2.9   8.6  52.4    78     1.4    2.7   61.6

  # Given a specific PPI score (from 0 - 100), get a poverty probability
  # based on a specific poverty definition. In this example, the national
  # poverty line definition
  ppiScore <- 50
  ppiTLS2013[ppiTLS2013$score == ppiScore, "nl100"]
#> [1] 2.9