Skip to contents

Poverty Probability Index (PPI) lookup table for Tajikistan

Usage

ppiTJK2015

Format

A data frame with 9 columns and 101 rows:

score

PPI score

nlFood

Food poverty line

nl100

National poverty line (100%)

nl150

National poverty line (150%)

nl200

National poverty line (200%)

median

Poorest half below 100% national

ppp125

Below $1.25 per day purchasing power parity (2005)

ppp200

Below $2.00 per day purchasing power parity (2005)

ppp250

Below $2.50 per day purchasing power parity (2005)

Examples

  # Access Tajikistan PPI table
  ppiTJK2015
#>     score nlFood nl100 nl150 nl200 median ppp125 ppp200 ppp250
#> 0       0   48.2 100.0 100.0 100.0   70.9   18.2   34.0   54.3
#> 1       1   48.2 100.0 100.0 100.0   70.9   18.2   34.0   54.3
#> 2       2   48.2 100.0 100.0 100.0   70.9   18.2   34.0   54.3
#> 3       3   48.2 100.0 100.0 100.0   70.9   18.2   34.0   54.3
#> 4       4   48.2 100.0 100.0 100.0   70.9   18.2   34.0   54.3
#> 5       5   48.2 100.0 100.0 100.0   70.9   18.2   34.0   54.3
#> 6       6   48.2 100.0 100.0 100.0   70.9   18.2   34.0   54.3
#> 7       7   48.2 100.0 100.0 100.0   70.9   18.2   34.0   54.3
#> 8       8   48.2 100.0 100.0 100.0   70.9   18.2   34.0   54.3
#> 9       9   48.2 100.0 100.0 100.0   70.9   18.2   34.0   54.3
#> 10     10   48.2 100.0 100.0 100.0   68.1   13.6   33.4   54.3
#> 11     11   48.2 100.0 100.0 100.0   68.1   13.6   33.4   54.3
#> 12     12   48.2 100.0 100.0 100.0   68.1   13.6   33.4   54.3
#> 13     13   48.2 100.0 100.0 100.0   68.1   13.6   33.4   54.3
#> 14     14   48.2 100.0 100.0 100.0   68.1   13.6   33.4   54.3
#> 15     15   48.2 100.0 100.0 100.0   62.1    3.6   29.2   54.3
#> 16     16   48.2 100.0 100.0 100.0   62.1    3.6   29.2   54.3
#> 17     17   48.2 100.0 100.0 100.0   62.1    3.6   29.2   54.3
#> 18     18   48.2 100.0 100.0 100.0   62.1    3.6   29.2   54.3
#> 19     19   48.2 100.0 100.0 100.0   62.1    3.6   29.2   54.3
#> 20     20   39.0  84.8  99.3 100.0   54.5    3.6   28.4   44.7
#> 21     21   39.0  84.8  99.3 100.0   54.5    3.6   28.4   44.7
#> 22     22   39.0  84.8  99.3 100.0   54.5    3.6   28.4   44.7
#> 23     23   39.0  84.8  99.3 100.0   54.5    3.6   28.4   44.7
#> 24     24   39.0  84.8  99.3 100.0   54.5    3.6   28.4   44.7
#> 25     25   37.8  77.9  96.7  99.5   48.7    2.1   20.0   43.7
#> 26     26   37.8  77.9  96.7  99.5   48.7    2.1   20.0   43.7
#> 27     27   37.8  77.9  96.7  99.5   48.7    2.1   20.0   43.7
#> 28     28   37.8  77.9  96.7  99.5   48.7    2.1   20.0   43.7
#> 29     29   37.8  77.9  96.7  99.5   48.7    2.1   20.0   43.7
#> 30     30   28.3  73.3  95.0  98.9   42.8    2.0   16.4   34.5
#> 31     31   28.3  73.3  95.0  98.9   42.8    2.0   16.4   34.5
#> 32     32   28.3  73.3  95.0  98.9   42.8    2.0   16.4   34.5
#> 33     33   28.3  73.3  95.0  98.9   42.8    2.0   16.4   34.5
#> 34     34   28.3  73.3  95.0  98.9   42.8    2.0   16.4   34.5
#> 35     35   19.2  63.3  91.4  98.1   32.0    0.7   10.3   24.8
#> 36     36   19.2  63.3  91.4  98.1   32.0    0.7   10.3   24.8
#> 37     37   19.2  63.3  91.4  98.1   32.0    0.7   10.3   24.8
#> 38     38   19.2  63.3  91.4  98.1   32.0    0.7   10.3   24.8
#> 39     39   19.2  63.3  91.4  98.1   32.0    0.7   10.3   24.8
#> 40     40   13.3  51.5  85.4  95.7   23.1    0.7    7.5   17.4
#> 41     41   13.3  51.5  85.4  95.7   23.1    0.7    7.5   17.4
#> 42     42   13.3  51.5  85.4  95.7   23.1    0.7    7.5   17.4
#> 43     43   13.3  51.5  85.4  95.7   23.1    0.7    7.5   17.4
#> 44     44   13.3  51.5  85.4  95.7   23.1    0.7    7.5   17.4
#> 45     45    9.7  45.3  81.8  93.0   15.7    0.7    4.4   11.1
#> 46     46    9.7  45.3  81.8  93.0   15.7    0.7    4.4   11.1
#> 47     47    9.7  45.3  81.8  93.0   15.7    0.7    4.4   11.1
#> 48     48    9.7  45.3  81.8  93.0   15.7    0.7    4.4   11.1
#> 49     49    9.7  45.3  81.8  93.0   15.7    0.7    4.4   11.1
#> 50     50    8.2  37.5  72.6  88.0   13.5    0.5    3.6   11.1
#> 51     51    8.2  37.5  72.6  88.0   13.5    0.5    3.6   11.1
#> 52     52    8.2  37.5  72.6  88.0   13.5    0.5    3.6   11.1
#> 53     53    8.2  37.5  72.6  88.0   13.5    0.5    3.6   11.1
#> 54     54    8.2  37.5  72.6  88.0   13.5    0.5    3.6   11.1
#> 55     55    3.9  23.4  56.4  79.6    8.6    0.3    2.5    6.5
#> 56     56    3.9  23.4  56.4  79.6    8.6    0.3    2.5    6.5
#> 57     57    3.9  23.4  56.4  79.6    8.6    0.3    2.5    6.5
#> 58     58    3.9  23.4  56.4  79.6    8.6    0.3    2.5    6.5
#> 59     59    3.9  23.4  56.4  79.6    8.6    0.3    2.5    6.5
#> 60     60    3.6  17.1  47.0  75.5    3.9    0.2    2.5    3.9
#> 61     61    3.6  17.1  47.0  75.5    3.9    0.2    2.5    3.9
#> 62     62    3.6  17.1  47.0  75.5    3.9    0.2    2.5    3.9
#> 63     63    3.6  17.1  47.0  75.5    3.9    0.2    2.5    3.9
#> 64     64    3.6  17.1  47.0  75.5    3.9    0.2    2.5    3.9
#> 65     65    3.3  13.2  39.8  66.6    3.7    0.0    2.4    3.6
#> 66     66    3.3  13.2  39.8  66.6    3.7    0.0    2.4    3.6
#> 67     67    3.3  13.2  39.8  66.6    3.7    0.0    2.4    3.6
#> 68     68    3.3  13.2  39.8  66.6    3.7    0.0    2.4    3.6
#> 69     69    3.3  13.2  39.8  66.6    3.7    0.0    2.4    3.6
#> 70     70    1.3  12.8  29.7  46.4    1.9    0.0    1.3    1.6
#> 71     71    1.3  12.8  29.7  46.4    1.9    0.0    1.3    1.6
#> 72     72    1.3  12.8  29.7  46.4    1.9    0.0    1.3    1.6
#> 73     73    1.3  12.8  29.7  46.4    1.9    0.0    1.3    1.6
#> 74     74    1.3  12.8  29.7  46.4    1.9    0.0    1.3    1.6
#> 75     75    0.7   4.8  23.1  38.1    1.0    0.0    0.7    1.0
#> 76     76    0.7   4.8  23.1  38.1    1.0    0.0    0.7    1.0
#> 77     77    0.7   4.8  23.1  38.1    1.0    0.0    0.7    1.0
#> 78     78    0.7   4.8  23.1  38.1    1.0    0.0    0.7    1.0
#> 79     79    0.7   4.8  23.1  38.1    1.0    0.0    0.7    1.0
#> 80     80    0.0   0.0  22.4  38.1    0.0    0.0    0.0    0.0
#> 81     81    0.0   0.0  22.4  38.1    0.0    0.0    0.0    0.0
#> 82     82    0.0   0.0  22.4  38.1    0.0    0.0    0.0    0.0
#> 83     83    0.0   0.0  22.4  38.1    0.0    0.0    0.0    0.0
#> 84     84    0.0   0.0  22.4  38.1    0.0    0.0    0.0    0.0
#> 85     85    0.0   0.0   0.0   8.7    0.0    0.0    0.0    0.0
#> 86     86    0.0   0.0   0.0   8.7    0.0    0.0    0.0    0.0
#> 87     87    0.0   0.0   0.0   8.7    0.0    0.0    0.0    0.0
#> 88     88    0.0   0.0   0.0   8.7    0.0    0.0    0.0    0.0
#> 89     89    0.0   0.0   0.0   8.7    0.0    0.0    0.0    0.0
#> 90     90    0.0   0.0   0.0   8.7    0.0    0.0    0.0    0.0
#> 91     91    0.0   0.0   0.0   8.7    0.0    0.0    0.0    0.0
#> 92     92    0.0   0.0   0.0   8.7    0.0    0.0    0.0    0.0
#> 93     93    0.0   0.0   0.0   8.7    0.0    0.0    0.0    0.0
#> 94     94    0.0   0.0   0.0   8.7    0.0    0.0    0.0    0.0
#> 95     95    0.0   0.0   0.0   8.7    0.0    0.0    0.0    0.0
#> 96     96    0.0   0.0   0.0   8.7    0.0    0.0    0.0    0.0
#> 97     97    0.0   0.0   0.0   8.7    0.0    0.0    0.0    0.0
#> 98     98    0.0   0.0   0.0   8.7    0.0    0.0    0.0    0.0
#> 99     99    0.0   0.0   0.0   8.7    0.0    0.0    0.0    0.0
#> 100   100    0.0   0.0   0.0   8.7    0.0    0.0    0.0    0.0

  # Given a specific PPI score (from 0 - 100), get the row of poverty
  # probabilities from PPI table it corresponds to
  ppiScore <- 50
  ppiTJK2015[ppiTJK2015$score == ppiScore, ]
#>    score nlFood nl100 nl150 nl200 median ppp125 ppp200 ppp250
#> 50    50    8.2  37.5  72.6    88   13.5    0.5    3.6   11.1

  # Use subset() function to get the row of poverty probabilities corresponding
  # to specific PPI score
  ppiScore <- 50
  subset(ppiTJK2015, score == ppiScore)
#>    score nlFood nl100 nl150 nl200 median ppp125 ppp200 ppp250
#> 50    50    8.2  37.5  72.6    88   13.5    0.5    3.6   11.1

  # Given a specific PPI score (from 0 - 100), get a poverty probability
  # based on a specific poverty definition. In this example, the national
  # poverty line definition
  ppiScore <- 50
  ppiTJK2015[ppiTJK2015$score == ppiScore, "nl100"]
#> [1] 37.5