Skip to contents

Poverty Probability Index (PPI) lookup table for El Salvador for 2021

Usage

ppiSLV2021

Format

A data frame with 21 columns and 101 rows:

score

PPI score

nl100

National poverty line (100%)

nl_extreme

National poverty line (extreme)

ppp215

Below $2.15 per day purchasing power parity (2017)

ppp365

Below $3.65 per day purchasing power parity (2017)

ppp685

Below $6.85 per day purchasing power parity (2017)

ppp100

Below $1.00 per day purchasing power parity (2011)

ppp190

Below $1.90 per day purchasing power parity (2011)

ppp320

Below $3.20 per day purchasing power parity (2011)

ppp550

Below $5.50 per day purchasing power parity (2011)

ppp800

Below $8.00 per day purchasing power parity (2011)

ppp1100

Below $11.00 per day purchasing power parity (2011)

ppp1500

Below $15.00 per day purchasing power parity (2011)

ppp2170

Below $21.70 per day purchasing power parity (2011)

ppp125

Below $1.25 per day purchasing power parity (2005)

ppp250

Below $2.50 per day purchasing power parity (2005)

ppp500

Below $5.00 per day purchasing power parity (2005)

percentile20

Below 20th percentile poverty line

percentile40

Below 40th percentile poverty line

percentile60

Below 60th percentile poverty line

percentile80

Below 80th percentile poverty line

Examples

  # Access El Salvador PPI table
  ppiSLV2021
#> # A tibble: 101 × 21
#>    score nl100 nl_extreme ppp215 ppp365 ppp685 ppp100 ppp190 ppp320 ppp550
#>    <dbl> <dbl>      <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
#>  1     0  71.6       31.0   38.1   65.2   90.2  10.5    35.3   62.9   87.3
#>  2     1  70.5       29.8   36.0   63.3   89.6   9.47   33.4   61.0   86.6
#>  3     2  69.3       28.6   34.1   61.3   89.0   8.50   31.5   59.1   85.7
#>  4     3  68.2       27.4   32.2   59.4   88.3   7.63   29.7   57.1   84.9
#>  5     4  67.0       26.3   30.3   57.4   87.6   6.83   27.9   55.1   84.0
#>  6     5  65.8       25.1   28.5   55.3   86.8   6.12   26.3   53.1   83.0
#>  7     6  64.6       24.0   26.8   53.3   86.0   5.47   24.6   51.1   82.0
#>  8     7  63.3       23.0   25.2   51.2   85.2   4.89   23.1   49.1   81.0
#>  9     8  62.1       22.0   23.6   49.1   84.3   4.37   21.6   47.1   79.9
#> 10     9  60.8       21.0   22.0   47.1   83.4   3.90   20.2   45.1   78.8
#> # ℹ 91 more rows
#> # ℹ 11 more variables: ppp800 <dbl>, ppp1100 <dbl>, ppp1500 <dbl>,
#> #   ppp2170 <dbl>, ppp125 <dbl>, ppp250 <dbl>, ppp500 <dbl>,
#> #   percentile20 <dbl>, percentile40 <dbl>, percentile60 <dbl>,
#> #   percentile80 <dbl>

  # Given a specific PPI score (from 0 - 100), get the row of poverty
  # probabilities from PPI table it corresponds to
  ppiScore <- 50
  ppiSLV2021[ppiSLV2021$score == ppiScore, ]
#> # A tibble: 1 × 21
#>   score nl100 nl_extreme ppp215 ppp365 ppp685 ppp100 ppp190 ppp320 ppp550 ppp800
#>   <dbl> <dbl>      <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
#> 1    50  14.5       2.34  0.820   2.90   24.2 0.0320  0.752   2.95   18.1   42.4
#> # ℹ 10 more variables: ppp1100 <dbl>, ppp1500 <dbl>, ppp2170 <dbl>,
#> #   ppp125 <dbl>, ppp250 <dbl>, ppp500 <dbl>, percentile20 <dbl>,
#> #   percentile40 <dbl>, percentile60 <dbl>, percentile80 <dbl>

  # Use subset() function to get the row of poverty probabilities corresponding
  # to specific PPI score
  ppiScore <- 50
  subset(ppiSLV2021, score == ppiScore)
#> # A tibble: 1 × 21
#>   score nl100 nl_extreme ppp215 ppp365 ppp685 ppp100 ppp190 ppp320 ppp550 ppp800
#>   <dbl> <dbl>      <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
#> 1    50  14.5       2.34  0.820   2.90   24.2 0.0320  0.752   2.95   18.1   42.4
#> # ℹ 10 more variables: ppp1100 <dbl>, ppp1500 <dbl>, ppp2170 <dbl>,
#> #   ppp125 <dbl>, ppp250 <dbl>, ppp500 <dbl>, percentile20 <dbl>,
#> #   percentile40 <dbl>, percentile60 <dbl>, percentile80 <dbl>

  # Given a specific PPI score (from 0 - 100), get a poverty probability
  # based on a specific poverty definition. In this example, the USAID
  # extreme poverty definition
  ppiScore <- 50
  ppiSLV2021[ppiSLV2021$score == ppiScore, "nl_extreme"]
#> # A tibble: 1 × 1
#>   nl_extreme
#>        <dbl>
#> 1       2.34