Skip to contents

Poverty Probability Index (PPI) lookup table for Rwanda

Usage

ppiRWA2016

Format

A data frame with 11 columns and 101 rows:

score

PPI score

nlFood

Food poverty line

nl100

National poverty line (100%)

nl150

National poverty line (150%)

nl200

National poverty line (200%)

half100

Poorest half below 100% national

ppp125

Below $1.25 per day purchasing power parity (2005)

ppp200

Below $2.00 per day purchasing power parity (2005)

ppp250

Below $2.50 per day purchasing power parity (2005)

ppp500

Below $5.00 per day purchasing power parity (2005)

ppp844

Below $8.44 per day purchasing power parity (2005)

Examples

  # Access Rwanda PPI table
  ppiRWA2016
#>     score nlFood nl100 nl150 nl200 half100 ppp125 ppp200 ppp250 ppp500 ppp844
#> 0       0   98.3  99.5 100.0 100.0    98.2  100.0  100.0  100.0  100.0  100.0
#> 1       1   98.3  99.5 100.0 100.0    98.2  100.0  100.0  100.0  100.0  100.0
#> 2       2   98.3  99.5 100.0 100.0    98.2  100.0  100.0  100.0  100.0  100.0
#> 3       3   98.3  99.5 100.0 100.0    98.2  100.0  100.0  100.0  100.0  100.0
#> 4       4   98.3  99.5 100.0 100.0    98.2  100.0  100.0  100.0  100.0  100.0
#> 5       5   77.2  93.4  98.1  99.2    75.6   97.5   99.2   99.8  100.0  100.0
#> 6       6   77.2  93.4  98.1  99.2    75.6   97.5   99.2   99.8  100.0  100.0
#> 7       7   77.2  93.4  98.1  99.2    75.6   97.5   99.2   99.8  100.0  100.0
#> 8       8   77.2  93.4  98.1  99.2    75.6   97.5   99.2   99.8  100.0  100.0
#> 9       9   77.2  93.4  98.1  99.2    75.6   97.5   99.2   99.8  100.0  100.0
#> 10     10   72.0  90.3  97.7  99.1    69.7   96.7   99.1   99.7  100.0  100.0
#> 11     11   72.0  90.3  97.7  99.1    69.7   96.7   99.1   99.7  100.0  100.0
#> 12     12   72.0  90.3  97.7  99.1    69.7   96.7   99.1   99.7  100.0  100.0
#> 13     13   72.0  90.3  97.7  99.1    69.7   96.7   99.1   99.7  100.0  100.0
#> 14     14   72.0  90.3  97.7  99.1    69.7   96.7   99.1   99.7  100.0  100.0
#> 15     15   57.3  83.2  95.6  98.3    56.3   94.3   98.6   99.6  100.0  100.0
#> 16     16   57.3  83.2  95.6  98.3    56.3   94.3   98.6   99.6  100.0  100.0
#> 17     17   57.3  83.2  95.6  98.3    56.3   94.3   98.6   99.6  100.0  100.0
#> 18     18   57.3  83.2  95.6  98.3    56.3   94.3   98.6   99.6  100.0  100.0
#> 19     19   57.3  83.2  95.6  98.3    56.3   94.3   98.6   99.6  100.0  100.0
#> 20     20   38.7  71.2  91.0  96.9    38.6   88.2   97.4   99.1  100.0  100.0
#> 21     21   38.7  71.2  91.0  96.9    38.6   88.2   97.4   99.1  100.0  100.0
#> 22     22   38.7  71.2  91.0  96.9    38.6   88.2   97.4   99.1  100.0  100.0
#> 23     23   38.7  71.2  91.0  96.9    38.6   88.2   97.4   99.1  100.0  100.0
#> 24     24   38.7  71.2  91.0  96.9    38.6   88.2   97.4   99.1  100.0  100.0
#> 25     25   28.8  63.0  90.6  96.1    28.3   85.1   96.9   98.7   99.9  100.0
#> 26     26   28.8  63.0  90.6  96.1    28.3   85.1   96.9   98.7   99.9  100.0
#> 27     27   28.8  63.0  90.6  96.1    28.3   85.1   96.9   98.7   99.9  100.0
#> 28     28   28.8  63.0  90.6  96.1    28.3   85.1   96.9   98.7   99.9  100.0
#> 29     29   28.8  63.0  90.6  96.1    28.3   85.1   96.9   98.7   99.9  100.0
#> 30     30   19.3  50.2  83.0  94.4    18.2   76.6   95.9   98.3   99.9  100.0
#> 31     31   19.3  50.2  83.0  94.4    18.2   76.6   95.9   98.3   99.9  100.0
#> 32     32   19.3  50.2  83.0  94.4    18.2   76.6   95.9   98.3   99.9  100.0
#> 33     33   19.3  50.2  83.0  94.4    18.2   76.6   95.9   98.3   99.9  100.0
#> 34     34   19.3  50.2  83.0  94.4    18.2   76.6   95.9   98.3   99.9  100.0
#> 35     35   14.0  34.7  70.5  87.1    12.6   60.4   90.6   95.7   99.9  100.0
#> 36     36   14.0  34.7  70.5  87.1    12.6   60.4   90.6   95.7   99.9  100.0
#> 37     37   14.0  34.7  70.5  87.1    12.6   60.4   90.6   95.7   99.9  100.0
#> 38     38   14.0  34.7  70.5  87.1    12.6   60.4   90.6   95.7   99.9  100.0
#> 39     39   14.0  34.7  70.5  87.1    12.6   60.4   90.6   95.7   99.9  100.0
#> 40     40    9.2  27.7  58.4  78.9     6.5   50.8   83.3   91.2   99.5   99.9
#> 41     41    9.2  27.7  58.4  78.9     6.5   50.8   83.3   91.2   99.5   99.9
#> 42     42    9.2  27.7  58.4  78.9     6.5   50.8   83.3   91.2   99.5   99.9
#> 43     43    9.2  27.7  58.4  78.9     6.5   50.8   83.3   91.2   99.5   99.9
#> 44     44    9.2  27.7  58.4  78.9     6.5   50.8   83.3   91.2   99.5   99.9
#> 45     45    5.0  17.0  45.1  67.8     3.4   36.4   73.2   85.2   98.5   99.9
#> 46     46    5.0  17.0  45.1  67.8     3.4   36.4   73.2   85.2   98.5   99.9
#> 47     47    5.0  17.0  45.1  67.8     3.4   36.4   73.2   85.2   98.5   99.9
#> 48     48    5.0  17.0  45.1  67.8     3.4   36.4   73.2   85.2   98.5   99.9
#> 49     49    5.0  17.0  45.1  67.8     3.4   36.4   73.2   85.2   98.5   99.9
#> 50     50    2.7  11.0  30.5  56.3     2.0   21.2   61.5   77.2   95.7   99.9
#> 51     51    2.7  11.0  30.5  56.3     2.0   21.2   61.5   77.2   95.7   99.9
#> 52     52    2.7  11.0  30.5  56.3     2.0   21.2   61.5   77.2   95.7   99.9
#> 53     53    2.7  11.0  30.5  56.3     2.0   21.2   61.5   77.2   95.7   99.9
#> 54     54    2.7  11.0  30.5  56.3     2.0   21.2   61.5   77.2   95.7   99.9
#> 55     55    0.6   6.0  25.4  42.8     0.5   17.4   46.6   61.0   90.4   98.6
#> 56     56    0.6   6.0  25.4  42.8     0.5   17.4   46.6   61.0   90.4   98.6
#> 57     57    0.6   6.0  25.4  42.8     0.5   17.4   46.6   61.0   90.4   98.6
#> 58     58    0.6   6.0  25.4  42.8     0.5   17.4   46.6   61.0   90.4   98.6
#> 59     59    0.6   6.0  25.4  42.8     0.5   17.4   46.6   61.0   90.4   98.6
#> 60     60    0.4   2.0  14.0  27.8     0.0    7.7   31.1   44.4   80.2   94.8
#> 61     61    0.4   2.0  14.0  27.8     0.0    7.7   31.1   44.4   80.2   94.8
#> 62     62    0.4   2.0  14.0  27.8     0.0    7.7   31.1   44.4   80.2   94.8
#> 63     63    0.4   2.0  14.0  27.8     0.0    7.7   31.1   44.4   80.2   94.8
#> 64     64    0.4   2.0  14.0  27.8     0.0    7.7   31.1   44.4   80.2   94.8
#> 65     65    0.2   0.9   7.3  18.6     0.0    3.4   17.7   28.0   69.4   86.2
#> 66     66    0.2   0.9   7.3  18.6     0.0    3.4   17.7   28.0   69.4   86.2
#> 67     67    0.2   0.9   7.3  18.6     0.0    3.4   17.7   28.0   69.4   86.2
#> 68     68    0.2   0.9   7.3  18.6     0.0    3.4   17.7   28.0   69.4   86.2
#> 69     69    0.2   0.9   7.3  18.6     0.0    3.4   17.7   28.0   69.4   86.2
#> 70     70    0.0   0.0   3.6   9.9     0.0    1.8   10.1   18.2   55.6   74.3
#> 71     71    0.0   0.0   3.6   9.9     0.0    1.8   10.1   18.2   55.6   74.3
#> 72     72    0.0   0.0   3.6   9.9     0.0    1.8   10.1   18.2   55.6   74.3
#> 73     73    0.0   0.0   3.6   9.9     0.0    1.8   10.1   18.2   55.6   74.3
#> 74     74    0.0   0.0   3.6   9.9     0.0    1.8   10.1   18.2   55.6   74.3
#> 75     75    0.0   0.0   1.3   7.2     0.0    0.2    8.2   14.8   50.8   65.7
#> 76     76    0.0   0.0   1.3   7.2     0.0    0.2    8.2   14.8   50.8   65.7
#> 77     77    0.0   0.0   1.3   7.2     0.0    0.2    8.2   14.8   50.8   65.7
#> 78     78    0.0   0.0   1.3   7.2     0.0    0.2    8.2   14.8   50.8   65.7
#> 79     79    0.0   0.0   1.3   7.2     0.0    0.2    8.2   14.8   50.8   65.7
#> 80     80    0.0   0.0   0.5   4.9     0.0    0.2    2.1    8.7   28.2   58.1
#> 81     81    0.0   0.0   0.5   4.9     0.0    0.2    2.1    8.7   28.2   58.1
#> 82     82    0.0   0.0   0.5   4.9     0.0    0.2    2.1    8.7   28.2   58.1
#> 83     83    0.0   0.0   0.5   4.9     0.0    0.2    2.1    8.7   28.2   58.1
#> 84     84    0.0   0.0   0.5   4.9     0.0    0.2    2.1    8.7   28.2   58.1
#> 85     85    0.0   0.0   0.4   1.0     0.0    0.2    0.6    2.4   16.8   45.6
#> 86     86    0.0   0.0   0.4   1.0     0.0    0.2    0.6    2.4   16.8   45.6
#> 87     87    0.0   0.0   0.4   1.0     0.0    0.2    0.6    2.4   16.8   45.6
#> 88     88    0.0   0.0   0.4   1.0     0.0    0.2    0.6    2.4   16.8   45.6
#> 89     89    0.0   0.0   0.4   1.0     0.0    0.2    0.6    2.4   16.8   45.6
#> 90     90    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0   10.9   45.6
#> 91     91    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0   10.9   45.6
#> 92     92    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0   10.9   45.6
#> 93     93    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0   10.9   45.6
#> 94     94    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0   10.9   45.6
#> 95     95    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0   45.6
#> 96     96    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0   45.6
#> 97     97    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0   45.6
#> 98     98    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0   45.6
#> 99     99    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0   45.6
#> 100   100    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0   45.6

  # Given a specific PPI score (from 0 - 100), get the row of poverty
  # probabilities from PPI table it corresponds to
  ppiScore <- 50
  ppiRWA2016[ppiRWA2016$score == ppiScore, ]
#>    score nlFood nl100 nl150 nl200 half100 ppp125 ppp200 ppp250 ppp500 ppp844
#> 50    50    2.7    11  30.5  56.3       2   21.2   61.5   77.2   95.7   99.9

  # Use subset() function to get the row of poverty probabilities corresponding
  # to specific PPI score
  ppiScore <- 50
  subset(ppiRWA2016, score == ppiScore)
#>    score nlFood nl100 nl150 nl200 half100 ppp125 ppp200 ppp250 ppp500 ppp844
#> 50    50    2.7    11  30.5  56.3       2   21.2   61.5   77.2   95.7   99.9

  # Given a specific PPI score (from 0 - 100), get a poverty probability
  # based on a specific poverty definition. In this example, the national
  # poverty line definition
  ppiScore <- 50
  ppiRWA2016[ppiRWA2016$score == ppiScore, "nl100"]
#> [1] 11