Skip to contents

Poverty Probability Index (PPI) lookup table for Romania

Usage

ppiROU2009

Format

A data frame with 9 columns and 101 rows:

score

PPI score

nl100

National poverty line (100%)

nl150

National poverty line (150%)

nl200

National poverty line (200%)

extreme

USAID extreme poverty

ppp250

Below $2.50 per day purchasing power parity (2005)

ppp375

Below $3.75 per day purchasing power parity (2005)

ppp500

Below $5.00 per day purchasing power parity (2005)

laeken

Laeken poverty line

Examples

  # Access Romania PPI table
  ppiROU2009
#>     score nl100 nl150 nl200 extreme ppp250 ppp375 ppp500 laeken
#> 0       0  77.9 100.0 100.0    77.9   77.9  100.0  100.0  100.0
#> 1       1  77.9 100.0 100.0    77.9   77.9  100.0  100.0  100.0
#> 2       2  77.9 100.0 100.0    77.9   77.9  100.0  100.0  100.0
#> 3       3  77.9 100.0 100.0    77.9   77.9  100.0  100.0  100.0
#> 4       4  77.9 100.0 100.0    77.9   77.9  100.0  100.0  100.0
#> 5       5  68.1 100.0 100.0    57.3   55.6   92.5  100.0   87.6
#> 6       6  68.1 100.0 100.0    57.3   55.6   92.5  100.0   87.6
#> 7       7  68.1 100.0 100.0    57.3   55.6   92.5  100.0   87.6
#> 8       8  68.1 100.0 100.0    57.3   55.6   92.5  100.0   87.6
#> 9       9  68.1 100.0 100.0    57.3   55.6   92.5  100.0   87.6
#> 10     10  50.2  82.8  97.1    45.3   45.3   72.9   93.0   78.5
#> 11     11  50.2  82.8  97.1    45.3   45.3   72.9   93.0   78.5
#> 12     12  50.2  82.8  97.1    45.3   45.3   72.9   93.0   78.5
#> 13     13  50.2  82.8  97.1    45.3   45.3   72.9   93.0   78.5
#> 14     14  50.2  82.8  97.1    45.3   45.3   72.9   93.0   78.5
#> 15     15  46.7  85.3  96.2    35.2   34.9   74.3   92.3   79.9
#> 16     16  46.7  85.3  96.2    35.2   34.9   74.3   92.3   79.9
#> 17     17  46.7  85.3  96.2    35.2   34.9   74.3   92.3   79.9
#> 18     18  46.7  85.3  96.2    35.2   34.9   74.3   92.3   79.9
#> 19     19  46.7  85.3  96.2    35.2   34.9   74.3   92.3   79.9
#> 20     20  32.1  77.4  95.6    18.1   16.0   59.6   89.4   62.6
#> 21     21  32.1  77.4  95.6    18.1   16.0   59.6   89.4   62.6
#> 22     22  32.1  77.4  95.6    18.1   16.0   59.6   89.4   62.6
#> 23     23  32.1  77.4  95.6    18.1   16.0   59.6   89.4   62.6
#> 24     24  32.1  77.4  95.6    18.1   16.0   59.6   89.4   62.6
#> 25     25  25.1  69.3  91.5    10.3   10.1   45.1   76.7   56.6
#> 26     26  25.1  69.3  91.5    10.3   10.1   45.1   76.7   56.6
#> 27     27  25.1  69.3  91.5    10.3   10.1   45.1   76.7   56.6
#> 28     28  25.1  69.3  91.5    10.3   10.1   45.1   76.7   56.6
#> 29     29  25.1  69.3  91.5    10.3   10.1   45.1   76.7   56.6
#> 30     30  14.6  55.6  85.1     4.7    4.3   28.8   56.9   49.1
#> 31     31  14.6  55.6  85.1     4.7    4.3   28.8   56.9   49.1
#> 32     32  14.6  55.6  85.1     4.7    4.3   28.8   56.9   49.1
#> 33     33  14.6  55.6  85.1     4.7    4.3   28.8   56.9   49.1
#> 34     34  14.6  55.6  85.1     4.7    4.3   28.8   56.9   49.1
#> 35     35   8.8  43.5  77.7     1.9    1.6   16.9   45.6   33.1
#> 36     36   8.8  43.5  77.7     1.9    1.6   16.9   45.6   33.1
#> 37     37   8.8  43.5  77.7     1.9    1.6   16.9   45.6   33.1
#> 38     38   8.8  43.5  77.7     1.9    1.6   16.9   45.6   33.1
#> 39     39   8.8  43.5  77.7     1.9    1.6   16.9   45.6   33.1
#> 40     40   4.2  31.0  68.0     0.7    0.7    9.4   33.1   29.3
#> 41     41   4.2  31.0  68.0     0.7    0.7    9.4   33.1   29.3
#> 42     42   4.2  31.0  68.0     0.7    0.7    9.4   33.1   29.3
#> 43     43   4.2  31.0  68.0     0.7    0.7    9.4   33.1   29.3
#> 44     44   4.2  31.0  68.0     0.7    0.7    9.4   33.1   29.3
#> 45     45   2.5  17.8  53.9     0.4    0.4    5.5   20.4   14.3
#> 46     46   2.5  17.8  53.9     0.4    0.4    5.5   20.4   14.3
#> 47     47   2.5  17.8  53.9     0.4    0.4    5.5   20.4   14.3
#> 48     48   2.5  17.8  53.9     0.4    0.4    5.5   20.4   14.3
#> 49     49   2.5  17.8  53.9     0.4    0.4    5.5   20.4   14.3
#> 50     50   0.8  11.9  42.8     0.2    0.2    1.4   13.1   10.0
#> 51     51   0.8  11.9  42.8     0.2    0.2    1.4   13.1   10.0
#> 52     52   0.8  11.9  42.8     0.2    0.2    1.4   13.1   10.0
#> 53     53   0.8  11.9  42.8     0.2    0.2    1.4   13.1   10.0
#> 54     54   0.8  11.9  42.8     0.2    0.2    1.4   13.1   10.0
#> 55     55   0.1   6.3  30.3     0.0    0.0    0.7    6.7    5.9
#> 56     56   0.1   6.3  30.3     0.0    0.0    0.7    6.7    5.9
#> 57     57   0.1   6.3  30.3     0.0    0.0    0.7    6.7    5.9
#> 58     58   0.1   6.3  30.3     0.0    0.0    0.7    6.7    5.9
#> 59     59   0.1   6.3  30.3     0.0    0.0    0.7    6.7    5.9
#> 60     60   0.1   3.2  21.4     0.1    0.1    0.1    4.6    4.9
#> 61     61   0.1   3.2  21.4     0.1    0.1    0.1    4.6    4.9
#> 62     62   0.1   3.2  21.4     0.1    0.1    0.1    4.6    4.9
#> 63     63   0.1   3.2  21.4     0.1    0.1    0.1    4.6    4.9
#> 64     64   0.1   3.2  21.4     0.1    0.1    0.1    4.6    4.9
#> 65     65   0.0   0.7  10.6     0.0    0.0    0.0    1.1    2.2
#> 66     66   0.0   0.7  10.6     0.0    0.0    0.0    1.1    2.2
#> 67     67   0.0   0.7  10.6     0.0    0.0    0.0    1.1    2.2
#> 68     68   0.0   0.7  10.6     0.0    0.0    0.0    1.1    2.2
#> 69     69   0.0   0.7  10.6     0.0    0.0    0.0    1.1    2.2
#> 70     70   0.0   0.8   5.6     0.0    0.0    0.6    0.8    3.2
#> 71     71   0.0   0.8   5.6     0.0    0.0    0.6    0.8    3.2
#> 72     72   0.0   0.8   5.6     0.0    0.0    0.6    0.8    3.2
#> 73     73   0.0   0.8   5.6     0.0    0.0    0.6    0.8    3.2
#> 74     74   0.0   0.8   5.6     0.0    0.0    0.6    0.8    3.2
#> 75     75   0.0   0.0   2.4     0.0    0.0    0.0    0.0    0.3
#> 76     76   0.0   0.0   2.4     0.0    0.0    0.0    0.0    0.3
#> 77     77   0.0   0.0   2.4     0.0    0.0    0.0    0.0    0.3
#> 78     78   0.0   0.0   2.4     0.0    0.0    0.0    0.0    0.3
#> 79     79   0.0   0.0   2.4     0.0    0.0    0.0    0.0    0.3
#> 80     80   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 81     81   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 82     82   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 83     83   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 84     84   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 85     85   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 86     86   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 87     87   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 88     88   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 89     89   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 90     90   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 91     91   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 92     92   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 93     93   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 94     94   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 95     95   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 96     96   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 97     97   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 98     98   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 99     99   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 100   100   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0

  # Given a specific PPI score (from 0 - 100), get the row of poverty
  # probabilities from PPI table it corresponds to
  ppiScore <- 50
  ppiROU2009[ppiROU2009$score == ppiScore, ]
#>    score nl100 nl150 nl200 extreme ppp250 ppp375 ppp500 laeken
#> 50    50   0.8  11.9  42.8     0.2    0.2    1.4   13.1     10

  # Use subset() function to get the row of poverty probabilities corresponding
  # to specific PPI score
  ppiScore <- 50
  subset(ppiROU2009, score == ppiScore)
#>    score nl100 nl150 nl200 extreme ppp250 ppp375 ppp500 laeken
#> 50    50   0.8  11.9  42.8     0.2    0.2    1.4   13.1     10

  # Given a specific PPI score (from 0 - 100), get a poverty probability
  # based on a specific poverty definition. In this example, the national
  # poverty line definition
  ppiScore <- 50
  ppiROU2009[ppiROU2009$score == ppiScore, "nl100"]
#> [1] 0.8