Skip to contents

Poverty Probability Index (PPI) lookup table for Paraguay

Usage

ppiPRY2012

Format

A data frame with 8 columns and 101 rows:

score

PPI score

nlFood

Food poverty line

nl100

National poverty line (100%)

nl150

National poverty line (150%)

nl200

National poverty line (200%)

extreme

USAID extreme poverty

ppp125

Below $1.25 per day purchasing power parity (2005)

ppp250

Below $2.50 per day purchasing power parity (2005)

Examples

  # Access Paraguay PPI table
  ppiPRY2012
#>     score nlFood nl100 nl150 nl200 extreme ppp125 ppp250
#> 0       0  100.0 100.0 100.0 100.0   100.0  100.0  100.0
#> 1       1  100.0 100.0 100.0 100.0   100.0  100.0  100.0
#> 2       2  100.0 100.0 100.0 100.0   100.0  100.0  100.0
#> 3       3  100.0 100.0 100.0 100.0   100.0  100.0  100.0
#> 4       4  100.0 100.0 100.0 100.0   100.0  100.0  100.0
#> 5       5  100.0 100.0 100.0 100.0   100.0  100.0  100.0
#> 6       6  100.0 100.0 100.0 100.0   100.0  100.0  100.0
#> 7       7  100.0 100.0 100.0 100.0   100.0  100.0  100.0
#> 8       8  100.0 100.0 100.0 100.0   100.0  100.0  100.0
#> 9       9  100.0 100.0 100.0 100.0   100.0  100.0  100.0
#> 10     10  100.0 100.0 100.0 100.0   100.0  100.0  100.0
#> 11     11  100.0 100.0 100.0 100.0   100.0  100.0  100.0
#> 12     12  100.0 100.0 100.0 100.0   100.0  100.0  100.0
#> 13     13  100.0 100.0 100.0 100.0   100.0  100.0  100.0
#> 14     14  100.0 100.0 100.0 100.0   100.0  100.0  100.0
#> 15     15   84.9  95.9 100.0 100.0    84.9   27.9   84.9
#> 16     16   84.9  95.9 100.0 100.0    84.9   27.9   84.9
#> 17     17   84.9  95.9 100.0 100.0    84.9   27.9   84.9
#> 18     18   84.9  95.9 100.0 100.0    84.9   27.9   84.9
#> 19     19   84.9  95.9 100.0 100.0    84.9   27.9   84.9
#> 20     20   77.9  94.0  99.5 100.0    76.4   25.8   76.4
#> 21     21   77.9  94.0  99.5 100.0    76.4   25.8   76.4
#> 22     22   77.9  94.0  99.5 100.0    76.4   25.8   76.4
#> 23     23   77.9  94.0  99.5 100.0    76.4   25.8   76.4
#> 24     24   77.9  94.0  99.5 100.0    76.4   25.8   76.4
#> 25     25   73.8  94.1  99.5 100.0    68.0   24.9   65.2
#> 26     26   73.8  94.1  99.5 100.0    68.0   24.9   65.2
#> 27     27   73.8  94.1  99.5 100.0    68.0   24.9   65.2
#> 28     28   73.8  94.1  99.5 100.0    68.0   24.9   65.2
#> 29     29   73.8  94.1  99.5 100.0    68.0   24.9   65.2
#> 30     30   67.8  85.8  94.9  98.8    57.7   20.6   55.2
#> 31     31   67.8  85.8  94.9  98.8    57.7   20.6   55.2
#> 32     32   67.8  85.8  94.9  98.8    57.7   20.6   55.2
#> 33     33   67.8  85.8  94.9  98.8    57.7   20.6   55.2
#> 34     34   67.8  85.8  94.9  98.8    57.7   20.6   55.2
#> 35     35   41.2  73.0  89.4  95.4    37.7    5.6   30.8
#> 36     36   41.2  73.0  89.4  95.4    37.7    5.6   30.8
#> 37     37   41.2  73.0  89.4  95.4    37.7    5.6   30.8
#> 38     38   41.2  73.0  89.4  95.4    37.7    5.6   30.8
#> 39     39   41.2  73.0  89.4  95.4    37.7    5.6   30.8
#> 40     40   33.2  67.0  87.2  94.3    29.3    4.2   23.8
#> 41     41   33.2  67.0  87.2  94.3    29.3    4.2   23.8
#> 42     42   33.2  67.0  87.2  94.3    29.3    4.2   23.8
#> 43     43   33.2  67.0  87.2  94.3    29.3    4.2   23.8
#> 44     44   33.2  67.0  87.2  94.3    29.3    4.2   23.8
#> 45     45   19.9  42.6  69.7  83.1    18.0    2.1   13.1
#> 46     46   19.9  42.6  69.7  83.1    18.0    2.1   13.1
#> 47     47   19.9  42.6  69.7  83.1    18.0    2.1   13.1
#> 48     48   19.9  42.6  69.7  83.1    18.0    2.1   13.1
#> 49     49   19.9  42.6  69.7  83.1    18.0    2.1   13.1
#> 50     50   11.2  25.7  52.8  75.0     8.2    0.5    7.5
#> 51     51   11.2  25.7  52.8  75.0     8.2    0.5    7.5
#> 52     52   11.2  25.7  52.8  75.0     8.2    0.5    7.5
#> 53     53   11.2  25.7  52.8  75.0     8.2    0.5    7.5
#> 54     54   11.2  25.7  52.8  75.0     8.2    0.5    7.5
#> 55     55    1.9  14.4  38.2  56.8     2.3    0.2    1.2
#> 56     56    1.9  14.4  38.2  56.8     2.3    0.2    1.2
#> 57     57    1.9  14.4  38.2  56.8     2.3    0.2    1.2
#> 58     58    1.9  14.4  38.2  56.8     2.3    0.2    1.2
#> 59     59    1.9  14.4  38.2  56.8     2.3    0.2    1.2
#> 60     60    0.6   6.1  26.6  45.2     1.1    0.1    0.5
#> 61     61    0.6   6.1  26.6  45.2     1.1    0.1    0.5
#> 62     62    0.6   6.1  26.6  45.2     1.1    0.1    0.5
#> 63     63    0.6   6.1  26.6  45.2     1.1    0.1    0.5
#> 64     64    0.6   6.1  26.6  45.2     1.1    0.1    0.5
#> 65     65    0.1   3.3  14.2  24.9     0.6    0.0    0.1
#> 66     66    0.1   3.3  14.2  24.9     0.6    0.0    0.1
#> 67     67    0.1   3.3  14.2  24.9     0.6    0.0    0.1
#> 68     68    0.1   3.3  14.2  24.9     0.6    0.0    0.1
#> 69     69    0.1   3.3  14.2  24.9     0.6    0.0    0.1
#> 70     70    0.0   2.6   9.1  18.6     0.1    0.0    0.0
#> 71     71    0.0   2.6   9.1  18.6     0.1    0.0    0.0
#> 72     72    0.0   2.6   9.1  18.6     0.1    0.0    0.0
#> 73     73    0.0   2.6   9.1  18.6     0.1    0.0    0.0
#> 74     74    0.0   2.6   9.1  18.6     0.1    0.0    0.0
#> 75     75    0.0   0.2   4.0  10.8     0.0    0.0    0.0
#> 76     76    0.0   0.2   4.0  10.8     0.0    0.0    0.0
#> 77     77    0.0   0.2   4.0  10.8     0.0    0.0    0.0
#> 78     78    0.0   0.2   4.0  10.8     0.0    0.0    0.0
#> 79     79    0.0   0.2   4.0  10.8     0.0    0.0    0.0
#> 80     80    0.0   0.0   0.0   3.0     0.0    0.0    0.0
#> 81     81    0.0   0.0   0.0   3.0     0.0    0.0    0.0
#> 82     82    0.0   0.0   0.0   3.0     0.0    0.0    0.0
#> 83     83    0.0   0.0   0.0   3.0     0.0    0.0    0.0
#> 84     84    0.0   0.0   0.0   3.0     0.0    0.0    0.0
#> 85     85    0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 86     86    0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 87     87    0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 88     88    0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 89     89    0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 90     90    0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 91     91    0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 92     92    0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 93     93    0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 94     94    0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 95     95    0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 96     96    0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 97     97    0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 98     98    0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 99     99    0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 100   100    0.0   0.0   0.0   0.0     0.0    0.0    0.0

  # Given a specific PPI score (from 0 - 100), get the row of poverty
  # probabilities from PPI table it corresponds to
  ppiScore <- 50
  ppiPRY2012[ppiPRY2012$score == ppiScore, ]
#>    score nlFood nl100 nl150 nl200 extreme ppp125 ppp250
#> 50    50   11.2  25.7  52.8    75     8.2    0.5    7.5

  # Use subset() function to get the row of poverty probabilities corresponding
  # to specific PPI score
  ppiScore <- 50
  subset(ppiPRY2012, score == ppiScore)
#>    score nlFood nl100 nl150 nl200 extreme ppp125 ppp250
#> 50    50   11.2  25.7  52.8    75     8.2    0.5    7.5

  # Given a specific PPI score (from 0 - 100), get a poverty probability
  # based on a specific poverty definition. In this example, the national
  # poverty line definition
  ppiScore <- 50
  ppiPRY2012[ppiPRY2012$score == ppiScore, "nl100"]
#> [1] 25.7