Poverty Probability Index (PPI) lookup table for Papua New Guinea 2023
Source:R/00_papua_new_guinea.R
ppiPNG2023.Rd
Poverty Probability Index (PPI) lookup table for Papua New Guinea 2023
Format
A data frame with 9 columns and 101 rows:
score
PPI score
percentile20_wi
Below 20th percentile wealth index
percentile40_wi
Below 40th percentile wealth index
percentile60_wi
Below 60th percentile wealth index
percentile80_wi
Below 80th percentile wealth index
percentile20_wi_ur
Below 20th percentile wealth index urban/rural
percentile40_wi_ur
Below 40th percentile wealth index urban/rural
percentile60_wi_ur
Below 60th percentile wealth index urban/rural
percentile80_wi_ur
Below 80th percentile wealth index urban/rural
Examples
# Access Papua New Guinea PPI table
ppiPNG2023
#> # A tibble: 101 × 9
#> score percentile20_wi percentile40_wi percentile60_wi percentile80_wi
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0 93.5 99.5 99.9 100.
#> 2 1 90.8 99.3 99.9 100.
#> 3 2 87.2 99.0 99.9 100.
#> 4 3 82.3 98.7 99.9 100.
#> 5 4 76.1 98.1 99.9 100.
#> 6 5 68.6 97.4 99.8 100.
#> 7 6 60.0 96.3 99.8 100.
#> 8 7 50.7 94.9 99.8 100.
#> 9 8 41.3 93.0 99.7 100.
#> 10 9 32.6 90.4 99.7 100.
#> # ℹ 91 more rows
#> # ℹ 4 more variables: percentile20_wi_ur <dbl>, percentile40_wi_ur <dbl>,
#> # percentile60_wi_ur <dbl>, percentile80_wi_ur <dbl>
# Given a specific PPI score (from 0 - 100), get the row of poverty
# probabilities from PPI table it corresponds to
ppiScore <- 50
ppiPNG2023[ppiPNG2023$score == ppiScore, ]
#> # A tibble: 1 × 9
#> score percentile20_wi percentile40_wi percentile60_wi percentile80_wi
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 50 0.00000912 0.000715 5.65 90.3
#> # ℹ 4 more variables: percentile20_wi_ur <dbl>, percentile40_wi_ur <dbl>,
#> # percentile60_wi_ur <dbl>, percentile80_wi_ur <dbl>
# Use subset() function to get the row of poverty probabilities corresponding
# to specific PPI score
ppiScore <- 50
subset(ppiPNG2023, score == ppiScore)
#> # A tibble: 1 × 9
#> score percentile20_wi percentile40_wi percentile60_wi percentile80_wi
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 50 0.00000912 0.000715 5.65 90.3
#> # ℹ 4 more variables: percentile20_wi_ur <dbl>, percentile40_wi_ur <dbl>,
#> # percentile60_wi_ur <dbl>, percentile80_wi_ur <dbl>
# Given a specific PPI score (from 0 - 100), get a poverty probability
# based on a specific poverty definition. In this example, the USAID
# extreme poverty definition
ppiScore <- 50
ppiPNG2023[ppiPNG2023$score == ppiScore, "percentile20_wi"]
#> # A tibble: 1 × 1
#> percentile20_wi
#> <dbl>
#> 1 0.00000912