
Poverty Probability Index (PPI) lookup table for Peru based on data from the 2022 Encuesta Nacional de Hogares (ENAHO)
Source:R/00_peru.R
ppiPER2024.RdPoverty Probability Index (PPI) lookup table for Peru based on data from the 2022 Encuesta Nacional de Hogares (ENAHO)
Format
A data frame with 15 columns and 101 rows:
scorePPI score
nlFoodFood poverty line
nl100National poverty line (100%)
nl150National poverty line (150%)
nl200National poverty line (200%)
ppp215Below $2.15 per day purchasing power parity (2017)
ppp365Below $3.65 per day purchasing power parity (2017)
ppp685Below $6.85 per day purchasing power parity (2017)
ppp190Below $1.90 per day purchasing power parity (2011)
ppp320Below $3.20 per day purchasing power parity (2011)
ppp550Below $5.50 per day purchasing power parity (2011)
percentile20Below 20th percentile poverty line
percentile40Below 40th percentile poverty line
percentile60Below 60th percentile poverty line
percentile80Below 80th percentile poverty line
Examples
# Access Peru PPI table
ppiPER2024
#> # A tibble: 101 × 15
#> score nlFood nl100 nl150 nl200 ppp215 ppp365 ppp685 ppp190 ppp320 ppp550
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0 67.0 37.9 87.7 95.5 16.1 45.4 80.6 10.7 36.1 69.2
#> 2 1 66.0 35.9 87.3 95.3 15.3 43.8 79.6 10.2 34.6 67.5
#> 3 2 64.9 33.9 86.8 95.1 14.5 42.3 78.5 9.69 33.2 65.8
#> 4 3 63.9 32.0 86.3 94.9 13.8 40.7 77.3 9.21 31.8 64.0
#> 5 4 62.8 30.1 85.8 94.7 13.1 39.1 76.2 8.75 30.5 62.2
#> 6 5 61.8 28.3 85.3 94.5 12.4 37.6 75.0 8.31 29.1 60.4
#> 7 6 60.7 26.6 84.8 94.3 11.8 36.1 73.7 7.89 27.8 58.6
#> 8 7 59.6 24.9 84.2 94.0 11.2 34.6 72.4 7.49 26.6 56.7
#> 9 8 58.5 23.4 83.6 93.8 10.6 33.2 71.1 7.11 25.4 54.8
#> 10 9 57.4 21.8 83.1 93.6 10.0 31.8 69.7 6.75 24.2 52.9
#> # ℹ 91 more rows
#> # ℹ 4 more variables: percentile20 <dbl>, percentile40 <dbl>,
#> # percentile60 <dbl>, percentile80 <dbl>
# Given a specific PPI score (from 0 - 100), get the row of poverty
# probabilities from PPI table it corresponds to
ppiScore <- 50
ppiPER2024[ppiPER2024$score == ppiScore, ]
#> # A tibble: 1 × 15
#> score nlFood nl100 nl150 nl200 ppp215 ppp365 ppp685 ppp190 ppp320 ppp550
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 50 17.4 0.785 46.6 72.8 0.936 3.20 13.5 0.714 2.32 4.56
#> # ℹ 4 more variables: percentile20 <dbl>, percentile40 <dbl>,
#> # percentile60 <dbl>, percentile80 <dbl>
# Use subset() function to get the row of poverty probabilities corresponding
# to specific PPI score
ppiScore <- 50
subset(ppiPER2024, score == ppiScore)
#> # A tibble: 1 × 15
#> score nlFood nl100 nl150 nl200 ppp215 ppp365 ppp685 ppp190 ppp320 ppp550
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 50 17.4 0.785 46.6 72.8 0.936 3.20 13.5 0.714 2.32 4.56
#> # ℹ 4 more variables: percentile20 <dbl>, percentile40 <dbl>,
#> # percentile60 <dbl>, percentile80 <dbl>
# Given a specific PPI score (from 0 - 100), get a poverty probability
# based on a specific poverty definition. In this example, the USAID
# extreme poverty definition
ppiScore <- 50
ppiPER2024[ppiPER2024$score == ppiScore, "nl100"]
#> # A tibble: 1 × 1
#> nl100
#> <dbl>
#> 1 0.785