Skip to contents

Poverty Probability Index (PPI) lookup table for Peru

Usage

ppiPER2012

Format

A data frame with 9 columns and 101 rows:

score

PPI score

nlFood

Food poverty line

nl100

National poverty line (100%)

nl150

National poverty line (150%)

nl200

National poverty line (200%)

extreme

USAID extreme poverty

ppp125

Below $1.25 per day purchasing power parity (2005)

ppp250

Below $2.50 per day purchasing power parity (2005)

ppp375

Below $3.75 per day purchasing power parity (2005)

Examples

  # Access Peru PPI table
  ppiPER2012
#>     score nlFood nl100 nl150 nl200 extreme ppp125 ppp250 ppp375
#> 0       0   73.7 100.0 100.0 100.0    83.5   45.4   72.6  100.0
#> 1       1   73.7 100.0 100.0 100.0    83.5   45.4   72.6  100.0
#> 2       2   73.7 100.0 100.0 100.0    83.5   45.4   72.6  100.0
#> 3       3   73.7 100.0 100.0 100.0    83.5   45.4   72.6  100.0
#> 4       4   73.7 100.0 100.0 100.0    83.5   45.4   72.6  100.0
#> 5       5   70.6  98.5  99.5 100.0    78.8   12.3   66.4   93.7
#> 6       6   70.6  98.5  99.5 100.0    78.8   12.3   66.4   93.7
#> 7       7   70.6  98.5  99.5 100.0    78.8   12.3   66.4   93.7
#> 8       8   70.6  98.5  99.5 100.0    78.8   12.3   66.4   93.7
#> 9       9   70.6  98.5  99.5 100.0    78.8   12.3   66.4   93.7
#> 10     10   57.5  95.8  99.4 100.0    72.2    4.7   47.4   90.1
#> 11     11   57.5  95.8  99.4 100.0    72.2    4.7   47.4   90.1
#> 12     12   57.5  95.8  99.4 100.0    72.2    4.7   47.4   90.1
#> 13     13   57.5  95.8  99.4 100.0    72.2    4.7   47.4   90.1
#> 14     14   57.5  95.8  99.4 100.0    72.2    4.7   47.4   90.1
#> 15     15   43.3  91.7  99.4 100.0    58.2    2.2   40.3   80.5
#> 16     16   43.3  91.7  99.4 100.0    58.2    2.2   40.3   80.5
#> 17     17   43.3  91.7  99.4 100.0    58.2    2.2   40.3   80.5
#> 18     18   43.3  91.7  99.4 100.0    58.2    2.2   40.3   80.5
#> 19     19   43.3  91.7  99.4 100.0    58.2    2.2   40.3   80.5
#> 20     20   39.7  84.5  96.7  99.6    53.5    2.1   35.2   72.6
#> 21     21   39.7  84.5  96.7  99.6    53.5    2.1   35.2   72.6
#> 22     22   39.7  84.5  96.7  99.6    53.5    2.1   35.2   72.6
#> 23     23   39.7  84.5  96.7  99.6    53.5    2.1   35.2   72.6
#> 24     24   39.7  84.5  96.7  99.6    53.5    2.1   35.2   72.6
#> 25     25   27.5  77.0  94.8  99.3    46.1    1.9   25.1   61.5
#> 26     26   27.5  77.0  94.8  99.3    46.1    1.9   25.1   61.5
#> 27     27   27.5  77.0  94.8  99.3    46.1    1.9   25.1   61.5
#> 28     28   27.5  77.0  94.8  99.3    46.1    1.9   25.1   61.5
#> 29     29   27.5  77.0  94.8  99.3    46.1    1.9   25.1   61.5
#> 30     30   17.8  66.9  90.7  98.1    32.3    1.0   16.7   48.8
#> 31     31   17.8  66.9  90.7  98.1    32.3    1.0   16.7   48.8
#> 32     32   17.8  66.9  90.7  98.1    32.3    1.0   16.7   48.8
#> 33     33   17.8  66.9  90.7  98.1    32.3    1.0   16.7   48.8
#> 34     34   17.8  66.9  90.7  98.1    32.3    1.0   16.7   48.8
#> 35     35    9.5  52.0  85.3  95.4    22.4    0.4    8.9   34.4
#> 36     36    9.5  52.0  85.3  95.4    22.4    0.4    8.9   34.4
#> 37     37    9.5  52.0  85.3  95.4    22.4    0.4    8.9   34.4
#> 38     38    9.5  52.0  85.3  95.4    22.4    0.4    8.9   34.4
#> 39     39    9.5  52.0  85.3  95.4    22.4    0.4    8.9   34.4
#> 40     40    4.8  38.9  76.8  93.6    18.4    0.3    4.8   23.6
#> 41     41    4.8  38.9  76.8  93.6    18.4    0.3    4.8   23.6
#> 42     42    4.8  38.9  76.8  93.6    18.4    0.3    4.8   23.6
#> 43     43    4.8  38.9  76.8  93.6    18.4    0.3    4.8   23.6
#> 44     44    4.8  38.9  76.8  93.6    18.4    0.3    4.8   23.6
#> 45     45    1.4  26.5  63.9  83.9     8.0    0.1    1.9   11.8
#> 46     46    1.4  26.5  63.9  83.9     8.0    0.1    1.9   11.8
#> 47     47    1.4  26.5  63.9  83.9     8.0    0.1    1.9   11.8
#> 48     48    1.4  26.5  63.9  83.9     8.0    0.1    1.9   11.8
#> 49     49    1.4  26.5  63.9  83.9     8.0    0.1    1.9   11.8
#> 50     50    0.6  16.8  53.6  77.2     4.3    0.0    0.7    5.2
#> 51     51    0.6  16.8  53.6  77.2     4.3    0.0    0.7    5.2
#> 52     52    0.6  16.8  53.6  77.2     4.3    0.0    0.7    5.2
#> 53     53    0.6  16.8  53.6  77.2     4.3    0.0    0.7    5.2
#> 54     54    0.6  16.8  53.6  77.2     4.3    0.0    0.7    5.2
#> 55     55    0.0   8.1  38.5  67.9     2.3    0.0    0.0    2.3
#> 56     56    0.0   8.1  38.5  67.9     2.3    0.0    0.0    2.3
#> 57     57    0.0   8.1  38.5  67.9     2.3    0.0    0.0    2.3
#> 58     58    0.0   8.1  38.5  67.9     2.3    0.0    0.0    2.3
#> 59     59    0.0   8.1  38.5  67.9     2.3    0.0    0.0    2.3
#> 60     60    0.0   3.6  25.8  53.3     1.0    0.0    0.0    1.2
#> 61     61    0.0   3.6  25.8  53.3     1.0    0.0    0.0    1.2
#> 62     62    0.0   3.6  25.8  53.3     1.0    0.0    0.0    1.2
#> 63     63    0.0   3.6  25.8  53.3     1.0    0.0    0.0    1.2
#> 64     64    0.0   3.6  25.8  53.3     1.0    0.0    0.0    1.2
#> 65     65    0.0   1.5  14.5  38.3     0.3    0.0    0.0    0.3
#> 66     66    0.0   1.5  14.5  38.3     0.3    0.0    0.0    0.3
#> 67     67    0.0   1.5  14.5  38.3     0.3    0.0    0.0    0.3
#> 68     68    0.0   1.5  14.5  38.3     0.3    0.0    0.0    0.3
#> 69     69    0.0   1.5  14.5  38.3     0.3    0.0    0.0    0.3
#> 70     70    0.0   0.7   6.5  20.2     0.2    0.0    0.0    0.0
#> 71     71    0.0   0.7   6.5  20.2     0.2    0.0    0.0    0.0
#> 72     72    0.0   0.7   6.5  20.2     0.2    0.0    0.0    0.0
#> 73     73    0.0   0.7   6.5  20.2     0.2    0.0    0.0    0.0
#> 74     74    0.0   0.7   6.5  20.2     0.2    0.0    0.0    0.0
#> 75     75    0.0   0.0   2.1   8.3     0.0    0.0    0.0    0.0
#> 76     76    0.0   0.0   2.1   8.3     0.0    0.0    0.0    0.0
#> 77     77    0.0   0.0   2.1   8.3     0.0    0.0    0.0    0.0
#> 78     78    0.0   0.0   2.1   8.3     0.0    0.0    0.0    0.0
#> 79     79    0.0   0.0   2.1   8.3     0.0    0.0    0.0    0.0
#> 80     80    0.0   0.0   0.0   4.5     0.0    0.0    0.0    0.0
#> 81     81    0.0   0.0   0.0   4.5     0.0    0.0    0.0    0.0
#> 82     82    0.0   0.0   0.0   4.5     0.0    0.0    0.0    0.0
#> 83     83    0.0   0.0   0.0   4.5     0.0    0.0    0.0    0.0
#> 84     84    0.0   0.0   0.0   4.5     0.0    0.0    0.0    0.0
#> 85     85    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0
#> 86     86    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0
#> 87     87    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0
#> 88     88    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0
#> 89     89    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0
#> 90     90    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0
#> 91     91    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0
#> 92     92    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0
#> 93     93    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0
#> 94     94    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0
#> 95     95    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0
#> 96     96    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0
#> 97     97    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0
#> 98     98    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0
#> 99     99    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0
#> 100   100    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0

  # Given a specific PPI score (from 0 - 100), get the row of poverty
  # probabilities from PPI table it corresponds to
  ppiScore <- 50
  ppiPER2012[ppiPER2012$score == ppiScore, ]
#>    score nlFood nl100 nl150 nl200 extreme ppp125 ppp250 ppp375
#> 50    50    0.6  16.8  53.6  77.2     4.3      0    0.7    5.2

  # Use subset() function to get the row of poverty probabilities corresponding
  # to specific PPI score
  ppiScore <- 50
  subset(ppiPER2012, score == ppiScore)
#>    score nlFood nl100 nl150 nl200 extreme ppp125 ppp250 ppp375
#> 50    50    0.6  16.8  53.6  77.2     4.3      0    0.7    5.2

  # Given a specific PPI score (from 0 - 100), get a poverty probability
  # based on a specific poverty definition. In this example, the national
  # poverty line definition
  ppiScore <- 50
  ppiPER2012[ppiPER2012$score == ppiScore, "nl100"]
#> [1] 16.8