Skip to contents

Poverty Probability Index (PPI) lookup table for Pakistan

Usage

ppiPAK2009

Format

A data frame with 10 columns and 101 rows:

score

PPI score

nl100

National poverty line (100%)

nl50

National poverty line (50%)

nl75

National poverty line (75%)

nl125

National poverty line (125%)

nl200

National poverty line (200%)

extreme

USAID extreme poverty

ppp125

Poorest half below 100 national

ppp250

Below $1.25 per day purchasing power parity (2005)

ppp375

Below $2.50 per day purchasing power parity (2005)

Examples

  # Access Pakistan PPI table
  ppiPAK2009
#>     score nl100 nl50 nl75 nl125 nl200 extreme ppp125 ppp250 ppp375
#> 1       0  95.4  0.0 73.8  95.4 100.0    72.9   95.4  100.0  100.0
#> 2       1  95.4  0.0 73.8  95.4 100.0    72.9   95.4  100.0  100.0
#> 3       2  95.4  0.0 73.8  95.4 100.0    72.9   95.4  100.0  100.0
#> 4       3  95.4  0.0 73.8  95.4 100.0    72.9   95.4  100.0  100.0
#> 5       4  95.4  0.0 73.8  95.4 100.0    72.9   95.4  100.0  100.0
#> 6       5  95.1  2.4 71.2  97.9 100.0    68.4   95.0  100.0  100.0
#> 7       6  95.1  2.4 71.2  97.9 100.0    68.4   95.0  100.0  100.0
#> 8       7  95.1  2.4 71.2  97.9 100.0    68.4   95.0  100.0  100.0
#> 9       8  95.1  2.4 71.2  97.9 100.0    68.4   95.0  100.0  100.0
#> 10      9  95.1  2.4 71.2  97.9 100.0    68.4   95.0  100.0  100.0
#> 11     10  84.1  9.9 39.7  94.5 100.0    54.5   79.1  100.0  100.0
#> 12     11  84.1  9.9 39.7  94.5 100.0    54.5   79.1  100.0  100.0
#> 13     12  84.1  9.9 39.7  94.5 100.0    54.5   79.1  100.0  100.0
#> 14     13  84.1  9.9 39.7  94.5 100.0    54.5   79.1  100.0  100.0
#> 15     14  84.1  9.9 39.7  94.5 100.0    54.5   79.1  100.0  100.0
#> 16     15  68.0  5.8 38.9  91.3  99.6    43.1   67.5   99.2   99.6
#> 17     16  68.0  5.8 38.9  91.3  99.6    43.1   67.5   99.2   99.6
#> 18     17  68.0  5.8 38.9  91.3  99.6    43.1   67.5   99.2   99.6
#> 19     18  68.0  5.8 38.9  91.3  99.6    43.1   67.5   99.2   99.6
#> 20     19  68.0  5.8 38.9  91.3  99.6    43.1   67.5   99.2   99.6
#> 21     20  57.6  2.6 18.9  75.5  99.2    36.1   56.8   98.7   99.4
#> 22     21  57.6  2.6 18.9  75.5  99.2    36.1   56.8   98.7   99.4
#> 23     22  57.6  2.6 18.9  75.5  99.2    36.1   56.8   98.7   99.4
#> 24     23  57.6  2.6 18.9  75.5  99.2    36.1   56.8   98.7   99.4
#> 25     24  57.6  2.6 18.9  75.5  99.2    36.1   56.8   98.7   99.4
#> 26     25  47.1  1.0 12.7  78.0  97.3    25.0   47.5   96.0  100.0
#> 27     26  47.1  1.0 12.7  78.0  97.3    25.0   47.5   96.0  100.0
#> 28     27  47.1  1.0 12.7  78.0  97.3    25.0   47.5   96.0  100.0
#> 29     28  47.1  1.0 12.7  78.0  97.3    25.0   47.5   96.0  100.0
#> 30     29  47.1  1.0 12.7  78.0  97.3    25.0   47.5   96.0  100.0
#> 31     30  39.5  0.4  8.7  67.0  97.3    16.2   36.4   96.1   99.8
#> 32     31  39.5  0.4  8.7  67.0  97.3    16.2   36.4   96.1   99.8
#> 33     32  39.5  0.4  8.7  67.0  97.3    16.2   36.4   96.1   99.8
#> 34     33  39.5  0.4  8.7  67.0  97.3    16.2   36.4   96.1   99.8
#> 35     34  39.5  0.4  8.7  67.0  97.3    16.2   36.4   96.1   99.8
#> 36     35  29.8  0.1  5.8  55.8  91.4    12.9   27.2   91.4   98.5
#> 37     36  29.8  0.1  5.8  55.8  91.4    12.9   27.2   91.4   98.5
#> 38     37  29.8  0.1  5.8  55.8  91.4    12.9   27.2   91.4   98.5
#> 39     38  29.8  0.1  5.8  55.8  91.4    12.9   27.2   91.4   98.5
#> 40     39  29.8  0.1  5.8  55.8  91.4    12.9   27.2   91.4   98.5
#> 41     40  17.4  0.0  2.6  42.6  90.1     7.0   14.2   88.6   98.8
#> 42     41  17.4  0.0  2.6  42.6  90.1     7.0   14.2   88.6   98.8
#> 43     42  17.4  0.0  2.6  42.6  90.1     7.0   14.2   88.6   98.8
#> 44     43  17.4  0.0  2.6  42.6  90.1     7.0   14.2   88.6   98.8
#> 45     44  17.4  0.0  2.6  42.6  90.1     7.0   14.2   88.6   98.8
#> 46     45  16.9  0.9  4.6  38.4  87.0     8.0   12.0   84.6   97.0
#> 47     46  16.9  0.9  4.6  38.4  87.0     8.0   12.0   84.6   97.0
#> 48     47  16.9  0.9  4.6  38.4  87.0     8.0   12.0   84.6   97.0
#> 49     48  16.9  0.9  4.6  38.4  87.0     8.0   12.0   84.6   97.0
#> 50     49  16.9  0.9  4.6  38.4  87.0     8.0   12.0   84.6   97.0
#> 51     50  10.7  0.0  1.2  29.9  79.3     3.9    7.1   72.8   94.7
#> 52     51  10.7  0.0  1.2  29.9  79.3     3.9    7.1   72.8   94.7
#> 53     52  10.7  0.0  1.2  29.9  79.3     3.9    7.1   72.8   94.7
#> 54     53  10.7  0.0  1.2  29.9  79.3     3.9    7.1   72.8   94.7
#> 55     54  10.7  0.0  1.2  29.9  79.3     3.9    7.1   72.8   94.7
#> 56     55   7.4  0.2  0.3  18.9  66.4     2.8    4.0   58.4   91.4
#> 57     56   7.4  0.2  0.3  18.9  66.4     2.8    4.0   58.4   91.4
#> 58     57   7.4  0.2  0.3  18.9  66.4     2.8    4.0   58.4   91.4
#> 59     58   7.4  0.2  0.3  18.9  66.4     2.8    4.0   58.4   91.4
#> 60     59   7.4  0.2  0.3  18.9  66.4     2.8    4.0   58.4   91.4
#> 61     60   5.1  0.0  0.3  16.1  64.1     0.9    1.3   54.8   83.9
#> 62     61   5.1  0.0  0.3  16.1  64.1     0.9    1.3   54.8   83.9
#> 63     62   5.1  0.0  0.3  16.1  64.1     0.9    1.3   54.8   83.9
#> 64     63   5.1  0.0  0.3  16.1  64.1     0.9    1.3   54.8   83.9
#> 65     64   5.1  0.0  0.3  16.1  64.1     0.9    1.3   54.8   83.9
#> 66     65   0.7  0.0  0.0   7.9  57.2     0.4    0.7   48.2   81.2
#> 67     66   0.7  0.0  0.0   7.9  57.2     0.4    0.7   48.2   81.2
#> 68     67   0.7  0.0  0.0   7.9  57.2     0.4    0.7   48.2   81.2
#> 69     68   0.7  0.0  0.0   7.9  57.2     0.4    0.7   48.2   81.2
#> 70     69   0.7  0.0  0.0   7.9  57.2     0.4    0.7   48.2   81.2
#> 71     70   0.4  0.0  0.4   4.8  31.7     0.0    0.4   26.8   67.1
#> 72     71   0.4  0.0  0.4   4.8  31.7     0.0    0.4   26.8   67.1
#> 73     72   0.4  0.0  0.4   4.8  31.7     0.0    0.4   26.8   67.1
#> 74     73   0.4  0.0  0.4   4.8  31.7     0.0    0.4   26.8   67.1
#> 75     74   0.4  0.0  0.4   4.8  31.7     0.0    0.4   26.8   67.1
#> 76     75   1.1  0.0  0.0   3.2  31.5     0.0    0.8   26.0   51.6
#> 77     76   1.1  0.0  0.0   3.2  31.5     0.0    0.8   26.0   51.6
#> 78     77   1.1  0.0  0.0   3.2  31.5     0.0    0.8   26.0   51.6
#> 79     78   1.1  0.0  0.0   3.2  31.5     0.0    0.8   26.0   51.6
#> 80     79   1.1  0.0  0.0   3.2  31.5     0.0    0.8   26.0   51.6
#> 81     80   0.0  0.0  0.0   2.5  15.6     0.0    0.0   11.7   45.9
#> 82     81   0.0  0.0  0.0   2.5  15.6     0.0    0.0   11.7   45.9
#> 83     82   0.0  0.0  0.0   2.5  15.6     0.0    0.0   11.7   45.9
#> 84     83   0.0  0.0  0.0   2.5  15.6     0.0    0.0   11.7   45.9
#> 85     84   0.0  0.0  0.0   2.5  15.6     0.0    0.0   11.7   45.9
#> 86     85   0.0  0.0  0.0   0.0  20.9     0.0    0.0   16.1   50.8
#> 87     86   0.0  0.0  0.0   0.0  20.9     0.0    0.0   16.1   50.8
#> 88     87   0.0  0.0  0.0   0.0  20.9     0.0    0.0   16.1   50.8
#> 89     88   0.0  0.0  0.0   0.0  20.9     0.0    0.0   16.1   50.8
#> 90     89   0.0  0.0  0.0   0.0  20.9     0.0    0.0   16.1   50.8
#> 91     90   0.0  0.0  0.0   0.9  14.4     0.0    0.0    3.1   23.6
#> 92     91   0.0  0.0  0.0   0.9  14.4     0.0    0.0    3.1   23.6
#> 93     92   0.0  0.0  0.0   0.9  14.4     0.0    0.0    3.1   23.6
#> 94     93   0.0  0.0  0.0   0.9  14.4     0.0    0.0    3.1   23.6
#> 95     94   0.0  0.0  0.0   0.9  14.4     0.0    0.0    3.1   23.6
#> 96     95   0.0  0.0  0.0   0.0   3.5     0.0    0.0    3.5   27.7
#> 97     96   0.0  0.0  0.0   0.0   3.5     0.0    0.0    3.5   27.7
#> 98     97   0.0  0.0  0.0   0.0   3.5     0.0    0.0    3.5   27.7
#> 99     98   0.0  0.0  0.0   0.0   3.5     0.0    0.0    3.5   27.7
#> 100    99   0.0  0.0  0.0   0.0   3.5     0.0    0.0    3.5   27.7
#> 101   100   0.0  0.0  0.0   0.0   3.5     0.0    0.0    3.5   27.7

  # Given a specific PPI score (from 0 - 100), get the row of poverty
  # probabilities from PPI table it corresponds to
  ppiScore <- 50
  ppiPAK2009[ppiPAK2009$score == ppiScore, ]
#>    score nl100 nl50 nl75 nl125 nl200 extreme ppp125 ppp250 ppp375
#> 51    50  10.7    0  1.2  29.9  79.3     3.9    7.1   72.8   94.7

  # Use subset() function to get the row of poverty probabilities corresponding
  # to specific PPI score
  ppiScore <- 50
  subset(ppiPAK2009, score == ppiScore)
#>    score nl100 nl50 nl75 nl125 nl200 extreme ppp125 ppp250 ppp375
#> 51    50  10.7    0  1.2  29.9  79.3     3.9    7.1   72.8   94.7

  # Given a specific PPI score (from 0 - 100), get a poverty probability
  # based on a specific poverty definition. In this example, the national
  # poverty line definition
  ppiScore <- 50
  ppiPAK2009[ppiPAK2009$score == ppiScore, "nl100"]
#> [1] 10.7