Skip to contents

Poverty Probability Index (PPI) lookup table for Nepal using new poverty definitions

Usage

ppiNPL2013_a

Format

A data frame with 9 columns and 101 rows:

score

PPI score

nlFood

Food poverty line

nl100

National poverty line (100%)

nl150

National poverty line (150%)

nl200

National poverty line (200%)

extreme

USAID extreme poverty

ppp125

Below $1.25 per day purchasing power parity (2005)

ppp200

Below $2.00 per day purchasing power parity (2005)

ppp250

Below $2.50 per day purchasing power parity (2005)

Examples

  # Access Nepal PPI table
  ppiNPL2013_a
#>     score nlFood nl100 nl150 nl200 extreme ppp125 ppp200 ppp250
#> 0       0  100.0 100.0 100.0 100.0   100.0  100.0  100.0  100.0
#> 1       1  100.0 100.0 100.0 100.0   100.0  100.0  100.0  100.0
#> 2       2  100.0 100.0 100.0 100.0   100.0  100.0  100.0  100.0
#> 3       3  100.0 100.0 100.0 100.0   100.0  100.0  100.0  100.0
#> 4       4  100.0 100.0 100.0 100.0   100.0  100.0  100.0  100.0
#> 5       5   38.9 100.0 100.0 100.0    66.3  100.0  100.0  100.0
#> 6       6   38.9 100.0 100.0 100.0    66.3  100.0  100.0  100.0
#> 7       7   38.9 100.0 100.0 100.0    66.3  100.0  100.0  100.0
#> 8       8   38.9 100.0 100.0 100.0    66.3  100.0  100.0  100.0
#> 9       9   38.9 100.0 100.0 100.0    66.3  100.0  100.0  100.0
#> 10     10   32.3  77.8 100.0 100.0    45.6   82.1  100.0  100.0
#> 11     11   32.3  77.8 100.0 100.0    45.6   82.1  100.0  100.0
#> 12     12   32.3  77.8 100.0 100.0    45.6   82.1  100.0  100.0
#> 13     13   32.3  77.8 100.0 100.0    45.6   82.1  100.0  100.0
#> 14     14   32.3  77.8 100.0 100.0    45.6   82.1  100.0  100.0
#> 15     15   20.7  64.6  92.7 100.0    41.4   67.5   95.2  100.0
#> 16     16   20.7  64.6  92.7 100.0    41.4   67.5   95.2  100.0
#> 17     17   20.7  64.6  92.7 100.0    41.4   67.5   95.2  100.0
#> 18     18   20.7  64.6  92.7 100.0    41.4   67.5   95.2  100.0
#> 19     19   20.7  64.6  92.7 100.0    41.4   67.5   95.2  100.0
#> 20     20   14.6  59.3  91.2  99.4    32.7   64.8   95.0   99.6
#> 21     21   14.6  59.3  91.2  99.4    32.7   64.8   95.0   99.6
#> 22     22   14.6  59.3  91.2  99.4    32.7   64.8   95.0   99.6
#> 23     23   14.6  59.3  91.2  99.4    32.7   64.8   95.0   99.6
#> 24     24   14.6  59.3  91.2  99.4    32.7   64.8   95.0   99.6
#> 25     25    9.3  49.8  85.1  96.2    25.0   58.4   90.9   98.1
#> 26     26    9.3  49.8  85.1  96.2    25.0   58.4   90.9   98.1
#> 27     27    9.3  49.8  85.1  96.2    25.0   58.4   90.9   98.1
#> 28     28    9.3  49.8  85.1  96.2    25.0   58.4   90.9   98.1
#> 29     29    9.3  49.8  85.1  96.2    25.0   58.4   90.9   98.1
#> 30     30    7.4  38.9  78.0  94.7    20.9   45.1   84.6   96.9
#> 31     31    7.4  38.9  78.0  94.7    20.9   45.1   84.6   96.9
#> 32     32    7.4  38.9  78.0  94.7    20.9   45.1   84.6   96.9
#> 33     33    7.4  38.9  78.0  94.7    20.9   45.1   84.6   96.9
#> 34     34    7.4  38.9  78.0  94.7    20.9   45.1   84.6   96.9
#> 35     35    3.9  25.9  68.3  90.6     9.3   31.2   77.9   92.8
#> 36     36    3.9  25.9  68.3  90.6     9.3   31.2   77.9   92.8
#> 37     37    3.9  25.9  68.3  90.6     9.3   31.2   77.9   92.8
#> 38     38    3.9  25.9  68.3  90.6     9.3   31.2   77.9   92.8
#> 39     39    3.9  25.9  68.3  90.6     9.3   31.2   77.9   92.8
#> 40     40    2.0  17.7  57.3  84.5     5.6   21.6   69.8   86.9
#> 41     41    2.0  17.7  57.3  84.5     5.6   21.6   69.8   86.9
#> 42     42    2.0  17.7  57.3  84.5     5.6   21.6   69.8   86.9
#> 43     43    2.0  17.7  57.3  84.5     5.6   21.6   69.8   86.9
#> 44     44    2.0  17.7  57.3  84.5     5.6   21.6   69.8   86.9
#> 45     45    0.0   9.6  44.6  74.9     2.8   12.7   58.6   80.4
#> 46     46    0.0   9.6  44.6  74.9     2.8   12.7   58.6   80.4
#> 47     47    0.0   9.6  44.6  74.9     2.8   12.7   58.6   80.4
#> 48     48    0.0   9.6  44.6  74.9     2.8   12.7   58.6   80.4
#> 49     49    0.0   9.6  44.6  74.9     2.8   12.7   58.6   80.4
#> 50     50    0.0   5.3  32.5  61.7     1.8    6.4   44.5   65.5
#> 51     51    0.0   5.3  32.5  61.7     1.8    6.4   44.5   65.5
#> 52     52    0.0   5.3  32.5  61.7     1.8    6.4   44.5   65.5
#> 53     53    0.0   5.3  32.5  61.7     1.8    6.4   44.5   65.5
#> 54     54    0.0   5.3  32.5  61.7     1.8    6.4   44.5   65.5
#> 55     55    0.0   3.5  25.2  53.5     0.9    4.6   36.4   57.7
#> 56     56    0.0   3.5  25.2  53.5     0.9    4.6   36.4   57.7
#> 57     57    0.0   3.5  25.2  53.5     0.9    4.6   36.4   57.7
#> 58     58    0.0   3.5  25.2  53.5     0.9    4.6   36.4   57.7
#> 59     59    0.0   3.5  25.2  53.5     0.9    4.6   36.4   57.7
#> 60     60    0.0   1.8  12.3  36.0     0.0    2.3   17.7   42.3
#> 61     61    0.0   1.8  12.3  36.0     0.0    2.3   17.7   42.3
#> 62     62    0.0   1.8  12.3  36.0     0.0    2.3   17.7   42.3
#> 63     63    0.0   1.8  12.3  36.0     0.0    2.3   17.7   42.3
#> 64     64    0.0   1.8  12.3  36.0     0.0    2.3   17.7   42.3
#> 65     65    0.0   0.4   8.2  27.1     0.0    0.8   14.0   34.0
#> 66     66    0.0   0.4   8.2  27.1     0.0    0.8   14.0   34.0
#> 67     67    0.0   0.4   8.2  27.1     0.0    0.8   14.0   34.0
#> 68     68    0.0   0.4   8.2  27.1     0.0    0.8   14.0   34.0
#> 69     69    0.0   0.4   8.2  27.1     0.0    0.8   14.0   34.0
#> 70     70    0.0   2.0   4.6  16.8     0.0    0.4    7.7   19.4
#> 71     71    0.0   2.0   4.6  16.8     0.0    0.4    7.7   19.4
#> 72     72    0.0   2.0   4.6  16.8     0.0    0.4    7.7   19.4
#> 73     73    0.0   2.0   4.6  16.8     0.0    0.4    7.7   19.4
#> 74     74    0.0   2.0   4.6  16.8     0.0    0.4    7.7   19.4
#> 75     75    0.0   0.0   1.8   7.8     0.0    0.3    4.5    9.6
#> 76     76    0.0   0.0   1.8   7.8     0.0    0.3    4.5    9.6
#> 77     77    0.0   0.0   1.8   7.8     0.0    0.3    4.5    9.6
#> 78     78    0.0   0.0   1.8   7.8     0.0    0.3    4.5    9.6
#> 79     79    0.0   0.0   1.8   7.8     0.0    0.3    4.5    9.6
#> 80     80    0.0   0.0   0.9   5.2     0.0    0.2    1.5    7.2
#> 81     81    0.0   0.0   0.9   5.2     0.0    0.2    1.5    7.2
#> 82     82    0.0   0.0   0.9   5.2     0.0    0.2    1.5    7.2
#> 83     83    0.0   0.0   0.9   5.2     0.0    0.2    1.5    7.2
#> 84     84    0.0   0.0   0.9   5.2     0.0    0.2    1.5    7.2
#> 85     85    0.0   0.0   0.0   0.7     0.0    0.0    0.0    3.2
#> 86     86    0.0   0.0   0.0   0.7     0.0    0.0    0.0    3.2
#> 87     87    0.0   0.0   0.0   0.7     0.0    0.0    0.0    3.2
#> 88     88    0.0   0.0   0.0   0.7     0.0    0.0    0.0    3.2
#> 89     89    0.0   0.0   0.0   0.7     0.0    0.0    0.0    3.2
#> 90     90    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0
#> 91     91    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0
#> 92     92    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0
#> 93     93    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0
#> 94     94    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0
#> 95     95    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0
#> 96     96    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0
#> 97     97    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0
#> 98     98    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0
#> 99     99    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0
#> 100   100    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0

  # Given a specific PPI score (from 0 - 100), get the row of poverty
  # probabilities from PPI table it corresponds to
  ppiScore <- 50
  ppiNPL2013_a[ppiNPL2013_a$score == ppiScore, ]
#>    score nlFood nl100 nl150 nl200 extreme ppp125 ppp200 ppp250
#> 50    50      0   5.3  32.5  61.7     1.8    6.4   44.5   65.5

  # Use subset() function to get the row of poverty probabilities corresponding
  # to specific PPI score
  ppiScore <- 50
  subset(ppiNPL2013_a, score == ppiScore)
#>    score nlFood nl100 nl150 nl200 extreme ppp125 ppp200 ppp250
#> 50    50      0   5.3  32.5  61.7     1.8    6.4   44.5   65.5

  # Given a specific PPI score (from 0 - 100), get a poverty probability
  # based on a specific poverty definition. In this example, the national
  # poverty line definition
  ppiScore <- 50
  ppiNPL2013_a[ppiNPL2013_a$score == ppiScore, "nl100"]
#> [1] 5.3