Skip to contents

Poverty Probability Index (PPI) lookup table for Niger

Usage

ppiNER2013

Format

A data frame with 9 columns and 101 rows:

score

PPI score

nlFood

Food poverty line

nl100

National poverty line (100%)

nl150

National poverty line (150%)

nl200

National poverty line (200%)

extreme

USAID extreme poverty

ppp125

Below $1.25 per day purchasing power parity (2005)

ppp200

Below $2.00 per day purchasing power parity (2005)

ppp250

Below $2.50 per day purchasing power parity (2005)

Examples

  # Access Niger PPI table
  ppiNER2013
#>     score nlFood nl100 nl150 nl200 extreme ppp125 ppp200 ppp250
#> 0       0   40.2  90.4  99.1 100.0    72.2   92.0  100.0  100.0
#> 1       1   40.2  90.4  99.1 100.0    72.2   92.0  100.0  100.0
#> 2       2   40.2  90.4  99.1 100.0    72.2   92.0  100.0  100.0
#> 3       3   40.2  90.4  99.1 100.0    72.2   92.0  100.0  100.0
#> 4       4   40.2  90.4  99.1 100.0    72.2   92.0  100.0  100.0
#> 5       5   36.0  89.7  98.6  99.6    54.1   90.9   99.4   99.8
#> 6       6   36.0  89.7  98.6  99.6    54.1   90.9   99.4   99.8
#> 7       7   36.0  89.7  98.6  99.6    54.1   90.9   99.4   99.8
#> 8       8   36.0  89.7  98.6  99.6    54.1   90.9   99.4   99.8
#> 9       9   36.0  89.7  98.6  99.6    54.1   90.9   99.4   99.8
#> 10     10   25.1  78.7  96.6  99.1    41.7   85.6   98.4   99.2
#> 11     11   25.1  78.7  96.6  99.1    41.7   85.6   98.4   99.2
#> 12     12   25.1  78.7  96.6  99.1    41.7   85.6   98.4   99.2
#> 13     13   25.1  78.7  96.6  99.1    41.7   85.6   98.4   99.2
#> 14     14   25.1  78.7  96.6  99.1    41.7   85.6   98.4   99.2
#> 15     15   20.1  76.0  96.6  99.1    35.6   83.8   98.4   99.2
#> 16     16   20.1  76.0  96.6  99.1    35.6   83.8   98.4   99.2
#> 17     17   20.1  76.0  96.6  99.1    35.6   83.8   98.4   99.2
#> 18     18   20.1  76.0  96.6  99.1    35.6   83.8   98.4   99.2
#> 19     19   20.1  76.0  96.6  99.1    35.6   83.8   98.4   99.2
#> 20     20   15.0  67.9  96.6  99.1    33.2   74.6   98.4   99.2
#> 21     21   15.0  67.9  96.6  99.1    33.2   74.6   98.4   99.2
#> 22     22   15.0  67.9  96.6  99.1    33.2   74.6   98.4   99.2
#> 23     23   15.0  67.9  96.6  99.1    33.2   74.6   98.4   99.2
#> 24     24   15.0  67.9  96.6  99.1    33.2   74.6   98.4   99.2
#> 25     25   10.7  53.9  84.3  97.5    19.4   63.4   95.4   98.0
#> 26     26   10.7  53.9  84.3  97.5    19.4   63.4   95.4   98.0
#> 27     27   10.7  53.9  84.3  97.5    19.4   63.4   95.4   98.0
#> 28     28   10.7  53.9  84.3  97.5    19.4   63.4   95.4   98.0
#> 29     29   10.7  53.9  84.3  97.5    19.4   63.4   95.4   98.0
#> 30     30    4.9  40.0  73.0  92.6    12.5   50.2   88.2   94.4
#> 31     31    4.9  40.0  73.0  92.6    12.5   50.2   88.2   94.4
#> 32     32    4.9  40.0  73.0  92.6    12.5   50.2   88.2   94.4
#> 33     33    4.9  40.0  73.0  92.6    12.5   50.2   88.2   94.4
#> 34     34    4.9  40.0  73.0  92.6    12.5   50.2   88.2   94.4
#> 35     35    3.5  32.3  64.6  84.3    10.1   38.8   74.2   89.5
#> 36     36    3.5  32.3  64.6  84.3    10.1   38.8   74.2   89.5
#> 37     37    3.5  32.3  64.6  84.3    10.1   38.8   74.2   89.5
#> 38     38    3.5  32.3  64.6  84.3    10.1   38.8   74.2   89.5
#> 39     39    3.5  32.3  64.6  84.3    10.1   38.8   74.2   89.5
#> 40     40    2.9  32.3  60.7  79.8    10.1   36.4   70.6   83.0
#> 41     41    2.9  32.3  60.7  79.8    10.1   36.4   70.6   83.0
#> 42     42    2.9  32.3  60.7  79.8    10.1   36.4   70.6   83.0
#> 43     43    2.9  32.3  60.7  79.8    10.1   36.4   70.6   83.0
#> 44     44    2.9  32.3  60.7  79.8    10.1   36.4   70.6   83.0
#> 45     45    1.9  25.3  59.9  75.0     6.3   30.0   70.3   77.8
#> 46     46    1.9  25.3  59.9  75.0     6.3   30.0   70.3   77.8
#> 47     47    1.9  25.3  59.9  75.0     6.3   30.0   70.3   77.8
#> 48     48    1.9  25.3  59.9  75.0     6.3   30.0   70.3   77.8
#> 49     49    1.9  25.3  59.9  75.0     6.3   30.0   70.3   77.8
#> 50     50    0.6  11.4  54.4  73.4     1.4   16.8   67.4   76.9
#> 51     51    0.6  11.4  54.4  73.4     1.4   16.8   67.4   76.9
#> 52     52    0.6  11.4  54.4  73.4     1.4   16.8   67.4   76.9
#> 53     53    0.6  11.4  54.4  73.4     1.4   16.8   67.4   76.9
#> 54     54    0.6  11.4  54.4  73.4     1.4   16.8   67.4   76.9
#> 55     55    0.2   5.3  24.2  44.4     0.3    9.0   36.3   51.2
#> 56     56    0.2   5.3  24.2  44.4     0.3    9.0   36.3   51.2
#> 57     57    0.2   5.3  24.2  44.4     0.3    9.0   36.3   51.2
#> 58     58    0.2   5.3  24.2  44.4     0.3    9.0   36.3   51.2
#> 59     59    0.2   5.3  24.2  44.4     0.3    9.0   36.3   51.2
#> 60     60    0.0   1.7  17.2  39.6     0.2    5.4   33.1   47.5
#> 61     61    0.0   1.7  17.2  39.6     0.2    5.4   33.1   47.5
#> 62     62    0.0   1.7  17.2  39.6     0.2    5.4   33.1   47.5
#> 63     63    0.0   1.7  17.2  39.6     0.2    5.4   33.1   47.5
#> 64     64    0.0   1.7  17.2  39.6     0.2    5.4   33.1   47.5
#> 65     65    0.0   1.7   9.9  32.3     0.0    2.9   21.6   37.2
#> 66     66    0.0   1.7   9.9  32.3     0.0    2.9   21.6   37.2
#> 67     67    0.0   1.7   9.9  32.3     0.0    2.9   21.6   37.2
#> 68     68    0.0   1.7   9.9  32.3     0.0    2.9   21.6   37.2
#> 69     69    0.0   1.7   9.9  32.3     0.0    2.9   21.6   37.2
#> 70     70    0.0   0.0   5.7  14.0     0.0    0.7    7.8   19.7
#> 71     71    0.0   0.0   5.7  14.0     0.0    0.7    7.8   19.7
#> 72     72    0.0   0.0   5.7  14.0     0.0    0.7    7.8   19.7
#> 73     73    0.0   0.0   5.7  14.0     0.0    0.7    7.8   19.7
#> 74     74    0.0   0.0   5.7  14.0     0.0    0.7    7.8   19.7
#> 75     75    0.0   0.0   4.4  11.0     0.0    0.7    6.7   18.1
#> 76     76    0.0   0.0   4.4  11.0     0.0    0.7    6.7   18.1
#> 77     77    0.0   0.0   4.4  11.0     0.0    0.7    6.7   18.1
#> 78     78    0.0   0.0   4.4  11.0     0.0    0.7    6.7   18.1
#> 79     79    0.0   0.0   4.4  11.0     0.0    0.7    6.7   18.1
#> 80     80    0.0   0.0   4.4  11.0     0.0    0.7    6.7   16.6
#> 81     81    0.0   0.0   4.4  11.0     0.0    0.7    6.7   16.6
#> 82     82    0.0   0.0   4.4  11.0     0.0    0.7    6.7   16.6
#> 83     83    0.0   0.0   4.4  11.0     0.0    0.7    6.7   16.6
#> 84     84    0.0   0.0   4.4  11.0     0.0    0.7    6.7   16.6
#> 85     85    0.0   0.0   4.4  11.0     0.0    0.0    6.7   15.7
#> 86     86    0.0   0.0   4.4  11.0     0.0    0.0    6.7   15.7
#> 87     87    0.0   0.0   4.4  11.0     0.0    0.0    6.7   15.7
#> 88     88    0.0   0.0   4.4  11.0     0.0    0.0    6.7   15.7
#> 89     89    0.0   0.0   4.4  11.0     0.0    0.0    6.7   15.7
#> 90     90    0.0   0.0   0.0   3.5     0.0    0.0    0.0    8.4
#> 91     91    0.0   0.0   0.0   3.5     0.0    0.0    0.0    8.4
#> 92     92    0.0   0.0   0.0   3.5     0.0    0.0    0.0    8.4
#> 93     93    0.0   0.0   0.0   3.5     0.0    0.0    0.0    8.4
#> 94     94    0.0   0.0   0.0   3.5     0.0    0.0    0.0    8.4
#> 95     95    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0
#> 96     96    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0
#> 97     97    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0
#> 98     98    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0
#> 99     99    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0
#> 100   100    0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0

  # Given a specific PPI score (from 0 - 100), get the row of poverty
  # probabilities from PPI table it corresponds to
  ppiScore <- 50
  ppiNER2013[ppiNER2013$score == ppiScore, ]
#>    score nlFood nl100 nl150 nl200 extreme ppp125 ppp200 ppp250
#> 50    50    0.6  11.4  54.4  73.4     1.4   16.8   67.4   76.9

  # Use subset() function to get the row of poverty probabilities corresponding
  # to specific PPI score
  ppiScore <- 50
  subset(ppiNER2013, score == ppiScore)
#>    score nlFood nl100 nl150 nl200 extreme ppp125 ppp200 ppp250
#> 50    50    0.6  11.4  54.4  73.4     1.4   16.8   67.4   76.9

  # Given a specific PPI score (from 0 - 100), get a poverty probability
  # based on a specific poverty definition. In this example, the national
  # poverty line definition
  ppiScore <- 50
  ppiNER2013[ppiNER2013$score == ppiScore, "nl100"]
#> [1] 11.4