Skip to contents

Poverty Probability Index (PPI) lookup table for Namibia

Usage

ppiNAM2013

Format

A data frame with 9 columns and 101 rows:

score

PPI score

nl100

National lower poverty line (100%)

nu100

National upper poverty line (100%)

nu150

National upper poverty line (150%)

nu200

National upper poverty line (200%)

extreme

USAID extreme poverty

ppp125

Below $1.25 per day purchasing power parity (2005)

ppp200

Below $2.00 per day purchasing power parity (2005)

ppp250

Below $2.50 per day purchasing power parity (2005)

Examples

  # Access Namibia PPI table
  ppiNAM2013
#>     score nl100 nu100 nu150 nu200 extreme ppp125 ppp200 ppp250
#> 0       0  77.4  96.2 100.0 100.0    80.2   87.1  100.0  100.0
#> 1       1  77.4  96.2 100.0 100.0    80.2   87.1  100.0  100.0
#> 2       2  77.4  96.2 100.0 100.0    80.2   87.1  100.0  100.0
#> 3       3  77.4  96.2 100.0 100.0    80.2   87.1  100.0  100.0
#> 4       4  77.4  96.2 100.0 100.0    80.2   87.1  100.0  100.0
#> 5       5  71.4  89.3 100.0 100.0    75.3   84.3  100.0  100.0
#> 6       6  71.4  89.3 100.0 100.0    75.3   84.3  100.0  100.0
#> 7       7  71.4  89.3 100.0 100.0    75.3   84.3  100.0  100.0
#> 8       8  71.4  89.3 100.0 100.0    75.3   84.3  100.0  100.0
#> 9       9  71.4  89.3 100.0 100.0    75.3   84.3  100.0  100.0
#> 10     10  68.9  82.6  98.9  99.4    69.8   79.0   98.9   99.3
#> 11     11  68.9  82.6  98.9  99.4    69.8   79.0   98.9   99.3
#> 12     12  68.9  82.6  98.9  99.4    69.8   79.0   98.9   99.3
#> 13     13  68.9  82.6  98.9  99.4    69.8   79.0   98.9   99.3
#> 14     14  68.9  82.6  98.9  99.4    69.8   79.0   98.9   99.3
#> 15     15  46.6  74.7  93.3  98.9    48.3   60.7   91.5   97.0
#> 16     16  46.6  74.7  93.3  98.9    48.3   60.7   91.5   97.0
#> 17     17  46.6  74.7  93.3  98.9    48.3   60.7   91.5   97.0
#> 18     18  46.6  74.7  93.3  98.9    48.3   60.7   91.5   97.0
#> 19     19  46.6  74.7  93.3  98.9    48.3   60.7   91.5   97.0
#> 20     20  42.3  66.9  92.0  98.5    40.9   52.9   88.5   95.8
#> 21     21  42.3  66.9  92.0  98.5    40.9   52.9   88.5   95.8
#> 22     22  42.3  66.9  92.0  98.5    40.9   52.9   88.5   95.8
#> 23     23  42.3  66.9  92.0  98.5    40.9   52.9   88.5   95.8
#> 24     24  42.3  66.9  92.0  98.5    40.9   52.9   88.5   95.8
#> 25     25  21.9  51.8  81.6  90.7    19.9   33.7   73.1   86.5
#> 26     26  21.9  51.8  81.6  90.7    19.9   33.7   73.1   86.5
#> 27     27  21.9  51.8  81.6  90.7    19.9   33.7   73.1   86.5
#> 28     28  21.9  51.8  81.6  90.7    19.9   33.7   73.1   86.5
#> 29     29  21.9  51.8  81.6  90.7    19.9   33.7   73.1   86.5
#> 30     30  17.1  39.4  70.5  88.9    15.7   24.7   63.0   80.3
#> 31     31  17.1  39.4  70.5  88.9    15.7   24.7   63.0   80.3
#> 32     32  17.1  39.4  70.5  88.9    15.7   24.7   63.0   80.3
#> 33     33  17.1  39.4  70.5  88.9    15.7   24.7   63.0   80.3
#> 34     34  17.1  39.4  70.5  88.9    15.7   24.7   63.0   80.3
#> 35     35  11.3  30.3  66.2  86.3     8.1   17.3   55.9   72.3
#> 36     36  11.3  30.3  66.2  86.3     8.1   17.3   55.9   72.3
#> 37     37  11.3  30.3  66.2  86.3     8.1   17.3   55.9   72.3
#> 38     38  11.3  30.3  66.2  86.3     8.1   17.3   55.9   72.3
#> 39     39  11.3  30.3  66.2  86.3     8.1   17.3   55.9   72.3
#> 40     40   6.0  16.7  51.2  71.9     3.4    9.3   35.9   57.1
#> 41     41   6.0  16.7  51.2  71.9     3.4    9.3   35.9   57.1
#> 42     42   6.0  16.7  51.2  71.9     3.4    9.3   35.9   57.1
#> 43     43   6.0  16.7  51.2  71.9     3.4    9.3   35.9   57.1
#> 44     44   6.0  16.7  51.2  71.9     3.4    9.3   35.9   57.1
#> 45     45   3.1  12.2  40.7  64.0     1.6    4.2   26.4   44.4
#> 46     46   3.1  12.2  40.7  64.0     1.6    4.2   26.4   44.4
#> 47     47   3.1  12.2  40.7  64.0     1.6    4.2   26.4   44.4
#> 48     48   3.1  12.2  40.7  64.0     1.6    4.2   26.4   44.4
#> 49     49   3.1  12.2  40.7  64.0     1.6    4.2   26.4   44.4
#> 50     50   2.1   7.6  25.1  51.5     1.3    2.5   15.6   33.3
#> 51     51   2.1   7.6  25.1  51.5     1.3    2.5   15.6   33.3
#> 52     52   2.1   7.6  25.1  51.5     1.3    2.5   15.6   33.3
#> 53     53   2.1   7.6  25.1  51.5     1.3    2.5   15.6   33.3
#> 54     54   2.1   7.6  25.1  51.5     1.3    2.5   15.6   33.3
#> 55     55   1.1   4.9  17.7  36.9     0.7    1.1   10.4   19.4
#> 56     56   1.1   4.9  17.7  36.9     0.7    1.1   10.4   19.4
#> 57     57   1.1   4.9  17.7  36.9     0.7    1.1   10.4   19.4
#> 58     58   1.1   4.9  17.7  36.9     0.7    1.1   10.4   19.4
#> 59     59   1.1   4.9  17.7  36.9     0.7    1.1   10.4   19.4
#> 60     60   0.7   2.3  11.5  28.9     0.5    0.8    6.2   12.4
#> 61     61   0.7   2.3  11.5  28.9     0.5    0.8    6.2   12.4
#> 62     62   0.7   2.3  11.5  28.9     0.5    0.8    6.2   12.4
#> 63     63   0.7   2.3  11.5  28.9     0.5    0.8    6.2   12.4
#> 64     64   0.7   2.3  11.5  28.9     0.5    0.8    6.2   12.4
#> 65     65   0.6   1.7   5.3  18.2     0.5    0.8    3.8    6.2
#> 66     66   0.6   1.7   5.3  18.2     0.5    0.8    3.8    6.2
#> 67     67   0.6   1.7   5.3  18.2     0.5    0.8    3.8    6.2
#> 68     68   0.6   1.7   5.3  18.2     0.5    0.8    3.8    6.2
#> 69     69   0.6   1.7   5.3  18.2     0.5    0.8    3.8    6.2
#> 70     70   0.6   1.7   5.3  12.0     0.5    0.8    3.8    6.2
#> 71     71   0.6   1.7   5.3  12.0     0.5    0.8    3.8    6.2
#> 72     72   0.6   1.7   5.3  12.0     0.5    0.8    3.8    6.2
#> 73     73   0.6   1.7   5.3  12.0     0.5    0.8    3.8    6.2
#> 74     74   0.6   1.7   5.3  12.0     0.5    0.8    3.8    6.2
#> 75     75   0.6   1.7   5.3  11.6     0.5    0.8    3.8    6.2
#> 76     76   0.6   1.7   5.3  11.6     0.5    0.8    3.8    6.2
#> 77     77   0.6   1.7   5.3  11.6     0.5    0.8    3.8    6.2
#> 78     78   0.6   1.7   5.3  11.6     0.5    0.8    3.8    6.2
#> 79     79   0.6   1.7   5.3  11.6     0.5    0.8    3.8    6.2
#> 80     80   0.6   1.7   5.3  11.6     0.5    0.8    3.8    6.2
#> 81     81   0.6   1.7   5.3  11.6     0.5    0.8    3.8    6.2
#> 82     82   0.6   1.7   5.3  11.6     0.5    0.8    3.8    6.2
#> 83     83   0.6   1.7   5.3  11.6     0.5    0.8    3.8    6.2
#> 84     84   0.6   1.7   5.3  11.6     0.5    0.8    3.8    6.2
#> 85     85   0.6   1.8   5.3  11.6     0.5    0.8    3.8    6.2
#> 86     86   0.6   1.8   5.3  11.6     0.5    0.8    3.8    6.2
#> 87     87   0.6   1.8   5.3  11.6     0.5    0.8    3.8    6.2
#> 88     88   0.6   1.8   5.3  11.6     0.5    0.8    3.8    6.2
#> 89     89   0.6   1.8   5.3  11.6     0.5    0.8    3.8    6.2
#> 90     90   0.6   1.8   5.3  11.6     0.5    0.8    3.8    6.2
#> 91     91   0.6   1.8   5.3  11.6     0.5    0.8    3.8    6.2
#> 92     92   0.6   1.8   5.3  11.6     0.5    0.8    3.8    6.2
#> 93     93   0.6   1.8   5.3  11.6     0.5    0.8    3.8    6.2
#> 94     94   0.6   1.8   5.3  11.6     0.5    0.8    3.8    6.2
#> 95     95   0.6   1.8   5.3  11.6     0.5    0.8    3.8    6.2
#> 96     96   0.6   1.8   5.3  11.6     0.5    0.8    3.8    6.2
#> 97     97   0.6   1.8   5.3  11.6     0.5    0.8    3.8    6.2
#> 98     98   0.6   1.8   5.3  11.6     0.5    0.8    3.8    6.2
#> 99     99   0.6   1.8   5.3  11.6     0.5    0.8    3.8    6.2
#> 100   100   0.6   1.8   5.3  11.6     0.5    0.8    3.8    6.2

  # Given a specific PPI score (from 0 - 100), get the row of poverty
  # probabilities from PPI table it corresponds to
  ppiScore <- 50
  ppiNAM2013[ppiNAM2013$score == ppiScore, ]
#>    score nl100 nu100 nu150 nu200 extreme ppp125 ppp200 ppp250
#> 50    50   2.1   7.6  25.1  51.5     1.3    2.5   15.6   33.3

  # Use subset() function to get the row of poverty probabilities corresponding
  # to specific PPI score
  ppiScore <- 50
  subset(ppiNAM2013, score == ppiScore)
#>    score nl100 nu100 nu150 nu200 extreme ppp125 ppp200 ppp250
#> 50    50   2.1   7.6  25.1  51.5     1.3    2.5   15.6   33.3

  # Given a specific PPI score (from 0 - 100), get a poverty probability
  # based on a specific poverty definition. In this example, the national
  # poverty line definition
  ppiScore <- 50
  ppiNAM2013[ppiNAM2013$score == ppiScore, "nl100"]
#> [1] 2.1