
Poverty Probability Index (PPI) lookup table for Malawi for 2023
Source:R/00_malawi.R
ppiMWI2023.RdPoverty Probability Index (PPI) lookup table for Malawi for 2023
Format
A data frame with 13 columns and 101 rows:
scorePPI score
nl100National poverty line (100%)
foodFood poverty line
ppp215Below $2.15 per day purchasing power parity (2017)
ppp365Below $3.65 per day purchasing power parity (2017)
ppp685Below $6.85 per day purchasing power parity (2017)
ppp190Below $1.90 per day purchasing power parity (2011)
ppp320Below $3.20 per day purchasing power parity (2011)
ppp550Below $5.50 per day purchasing power parity (2011)
percentile20Below 20th percentile poverty line
percentile40Below 40th percentile poverty line
percentile60Below 50th percentile poverty line
percentile80Below 60th percentile poverty line
Examples
# Access Malawi PPI table
ppiMWI2023
#> # A tibble: 101 × 13
#> score nl100 food ppp215 ppp365 ppp685 ppp190 ppp320 ppp550 percentile20
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0 95.1 69.6 99.1 99.9 100. 98.6 99.9 100. 75.0
#> 2 1 94.6 67.0 99.0 99.9 100. 98.5 99.9 100. 72.8
#> 3 2 94.0 64.4 98.9 99.9 100. 98.3 99.9 100. 70.5
#> 4 3 93.4 61.7 98.8 99.9 100. 98.1 99.9 100. 68.1
#> 5 4 92.8 58.9 98.6 99.9 100. 97.9 99.8 100. 65.6
#> 6 5 92.0 56.0 98.5 99.9 100. 97.7 99.8 100. 63.0
#> 7 6 91.2 53.1 98.3 99.9 100. 97.4 99.8 100. 60.3
#> 8 7 90.3 50.1 98.1 99.8 100. 97.1 99.8 100. 57.6
#> 9 8 89.4 47.2 97.9 99.8 100. 96.8 99.7 100. 54.8
#> 10 9 88.3 44.3 97.6 99.8 100. 96.4 99.7 100. 52.0
#> # ℹ 91 more rows
#> # ℹ 3 more variables: percentile40 <dbl>, percentile60 <dbl>,
#> # percentile80 <dbl>
# Given a specific PPI score (from 0 - 100), get the row of poverty
# probabilities from PPI table it corresponds to
ppiScore <- 50
ppiMWI2023[ppiMWI2023$score == ppiScore, ]
#> # A tibble: 1 × 13
#> score nl100 food ppp215 ppp365 ppp685 ppp190 ppp320 ppp550 percentile20
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 50 9.27 0.638 28.4 78.5 96.7 22.2 70.3 94.3 1.05
#> # ℹ 3 more variables: percentile40 <dbl>, percentile60 <dbl>,
#> # percentile80 <dbl>
# Use subset() function to get the row of poverty probabilities corresponding
# to specific PPI score
ppiScore <- 50
subset(ppiMWI2023, score == ppiScore)
#> # A tibble: 1 × 13
#> score nl100 food ppp215 ppp365 ppp685 ppp190 ppp320 ppp550 percentile20
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 50 9.27 0.638 28.4 78.5 96.7 22.2 70.3 94.3 1.05
#> # ℹ 3 more variables: percentile40 <dbl>, percentile60 <dbl>,
#> # percentile80 <dbl>
# Given a specific PPI score (from 0 - 100), get a poverty probability
# based on a specific poverty definition. In this example, the USAID
# extreme poverty definition
ppiScore <- 50
ppiMWI2023[ppiMWI2023$score == ppiScore, "nl100"]
#> # A tibble: 1 × 1
#> nl100
#> <dbl>
#> 1 9.27