Poverty Probability Index (PPI) lookup table for Malawi for 2023
Source:R/00_malawi.R
ppiMWI2023.Rd
Poverty Probability Index (PPI) lookup table for Malawi for 2023
Format
A data frame with 13 columns and 101 rows:
score
PPI score
nl100
National poverty line (100%)
food
Food poverty line
ppp215
Below $2.15 per day purchasing power parity (2017)
ppp365
Below $3.65 per day purchasing power parity (2017)
ppp685
Below $6.85 per day purchasing power parity (2017)
ppp190
Below $1.90 per day purchasing power parity (2011)
ppp320
Below $3.20 per day purchasing power parity (2011)
ppp550
Below $5.50 per day purchasing power parity (2011)
percentile20
Below 20th percentile poverty line
percentile40
Below 40th percentile poverty line
percentile60
Below 50th percentile poverty line
percentile80
Below 60th percentile poverty line
Examples
# Access Malawi PPI table
ppiMWI2023
#> # A tibble: 101 × 13
#> score nl100 food ppp215 ppp365 ppp685 ppp190 ppp320 ppp550 percentile20
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0 95.1 69.6 99.1 99.9 100. 98.6 99.9 100. 75.0
#> 2 1 94.6 67.0 99.0 99.9 100. 98.5 99.9 100. 72.8
#> 3 2 94.0 64.4 98.9 99.9 100. 98.3 99.9 100. 70.5
#> 4 3 93.4 61.7 98.8 99.9 100. 98.1 99.9 100. 68.1
#> 5 4 92.8 58.9 98.6 99.9 100. 97.9 99.8 100. 65.6
#> 6 5 92.0 56.0 98.5 99.9 100. 97.7 99.8 100. 63.0
#> 7 6 91.2 53.1 98.3 99.9 100. 97.4 99.8 100. 60.3
#> 8 7 90.3 50.1 98.1 99.8 100. 97.1 99.8 100. 57.6
#> 9 8 89.4 47.2 97.9 99.8 100. 96.8 99.7 100. 54.8
#> 10 9 88.3 44.3 97.6 99.8 100. 96.4 99.7 100. 52.0
#> # ℹ 91 more rows
#> # ℹ 3 more variables: percentile40 <dbl>, percentile60 <dbl>,
#> # percentile80 <dbl>
# Given a specific PPI score (from 0 - 100), get the row of poverty
# probabilities from PPI table it corresponds to
ppiScore <- 50
ppiMWI2023[ppiMWI2023$score == ppiScore, ]
#> # A tibble: 1 × 13
#> score nl100 food ppp215 ppp365 ppp685 ppp190 ppp320 ppp550 percentile20
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 50 9.27 0.638 28.4 78.5 96.7 22.2 70.3 94.3 1.05
#> # ℹ 3 more variables: percentile40 <dbl>, percentile60 <dbl>,
#> # percentile80 <dbl>
# Use subset() function to get the row of poverty probabilities corresponding
# to specific PPI score
ppiScore <- 50
subset(ppiMWI2023, score == ppiScore)
#> # A tibble: 1 × 13
#> score nl100 food ppp215 ppp365 ppp685 ppp190 ppp320 ppp550 percentile20
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 50 9.27 0.638 28.4 78.5 96.7 22.2 70.3 94.3 1.05
#> # ℹ 3 more variables: percentile40 <dbl>, percentile60 <dbl>,
#> # percentile80 <dbl>
# Given a specific PPI score (from 0 - 100), get a poverty probability
# based on a specific poverty definition. In this example, the USAID
# extreme poverty definition
ppiScore <- 50
ppiMWI2023[ppiMWI2023$score == ppiScore, "nl100"]
#> # A tibble: 1 × 1
#> nl100
#> <dbl>
#> 1 9.27