Skip to contents

Poverty Probability Index (PPI) lookup table for Malawi for 2023

Usage

ppiMWI2023

Format

A data frame with 13 columns and 101 rows:

score

PPI score

nl100

National poverty line (100%)

food

Food poverty line

ppp215

Below $2.15 per day purchasing power parity (2017)

ppp365

Below $3.65 per day purchasing power parity (2017)

ppp685

Below $6.85 per day purchasing power parity (2017)

ppp190

Below $1.90 per day purchasing power parity (2011)

ppp320

Below $3.20 per day purchasing power parity (2011)

ppp550

Below $5.50 per day purchasing power parity (2011)

percentile20

Below 20th percentile poverty line

percentile40

Below 40th percentile poverty line

percentile60

Below 50th percentile poverty line

percentile80

Below 60th percentile poverty line

Examples

  # Access Malawi PPI table
  ppiMWI2023
#> # A tibble: 101 × 13
#>    score nl100  food ppp215 ppp365 ppp685 ppp190 ppp320 ppp550 percentile20
#>    <dbl> <dbl> <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>        <dbl>
#>  1     0  95.1  69.6   99.1   99.9   100.   98.6   99.9   100.         75.0
#>  2     1  94.6  67.0   99.0   99.9   100.   98.5   99.9   100.         72.8
#>  3     2  94.0  64.4   98.9   99.9   100.   98.3   99.9   100.         70.5
#>  4     3  93.4  61.7   98.8   99.9   100.   98.1   99.9   100.         68.1
#>  5     4  92.8  58.9   98.6   99.9   100.   97.9   99.8   100.         65.6
#>  6     5  92.0  56.0   98.5   99.9   100.   97.7   99.8   100.         63.0
#>  7     6  91.2  53.1   98.3   99.9   100.   97.4   99.8   100.         60.3
#>  8     7  90.3  50.1   98.1   99.8   100.   97.1   99.8   100.         57.6
#>  9     8  89.4  47.2   97.9   99.8   100.   96.8   99.7   100.         54.8
#> 10     9  88.3  44.3   97.6   99.8   100.   96.4   99.7   100.         52.0
#> # ℹ 91 more rows
#> # ℹ 3 more variables: percentile40 <dbl>, percentile60 <dbl>,
#> #   percentile80 <dbl>

  # Given a specific PPI score (from 0 - 100), get the row of poverty
  # probabilities from PPI table it corresponds to
  ppiScore <- 50
  ppiMWI2023[ppiMWI2023$score == ppiScore, ]
#> # A tibble: 1 × 13
#>   score nl100  food ppp215 ppp365 ppp685 ppp190 ppp320 ppp550 percentile20
#>   <dbl> <dbl> <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>        <dbl>
#> 1    50  9.27 0.638   28.4   78.5   96.7   22.2   70.3   94.3         1.05
#> # ℹ 3 more variables: percentile40 <dbl>, percentile60 <dbl>,
#> #   percentile80 <dbl>

  # Use subset() function to get the row of poverty probabilities corresponding
  # to specific PPI score
  ppiScore <- 50
  subset(ppiMWI2023, score == ppiScore)
#> # A tibble: 1 × 13
#>   score nl100  food ppp215 ppp365 ppp685 ppp190 ppp320 ppp550 percentile20
#>   <dbl> <dbl> <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>        <dbl>
#> 1    50  9.27 0.638   28.4   78.5   96.7   22.2   70.3   94.3         1.05
#> # ℹ 3 more variables: percentile40 <dbl>, percentile60 <dbl>,
#> #   percentile80 <dbl>

  # Given a specific PPI score (from 0 - 100), get a poverty probability
  # based on a specific poverty definition. In this example, the USAID
  # extreme poverty definition
  ppiScore <- 50
  ppiMWI2023[ppiMWI2023$score == ppiScore, "nl100"]
#> # A tibble: 1 × 1
#>   nl100
#>   <dbl>
#> 1  9.27