Poverty Probability Index (PPI) lookup table for Malawi
Format
A data frame with 16 columns and 101 rows:
scorePPI score
nl100National poverty line (100%)
extremeExtreme poverty line
nl150National poverty line (150%)
nl200National poverty line (200%)
ppp100Below $1.00 per day purchasing power parity (2011)
ppp190Below $1.90 per day purchasing power parity (2011)
ppp320Below $3.20 per day purchasing power parity (2011)
ppp550Below $5.50 per day purchasing power parity (2011)
ppp125Below $1.25 per day purchasing power parity (2005)
ppp250Below $2.50 per day purchasing power parity (2005)
ppp500Below $5.00 per day purchasing power parity (2005)
percentile20Below 20th percentile poverty line
percentile40Below 40th percentile poverty line
percentile60Below 50th percentile poverty line
percentile80Below 60th percentile poverty line
Examples
# Access Malawi PPI table
ppiMWI2020
#> # A tibble: 100 × 16
#> score nl100 extreme nl150 nl200 ppp100 ppp190 ppp320 ppp550 ppp125 ppp250
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 96.3 80.3 99.0 99.6 89.8 98.7 99.9 100. 95.4 99.5
#> 2 2 95.9 78.6 98.9 99.6 88.8 98.6 99.9 100. 94.9 99.5
#> 3 3 95.5 76.8 98.8 99.6 87.8 98.5 99.9 100. 94.4 99.4
#> 4 4 95.1 74.8 98.7 99.6 86.6 98.4 99.9 100. 93.9 99.4
#> 5 5 94.6 72.8 98.6 99.5 85.4 98.2 99.8 100. 93.3 99.3
#> 6 6 94.1 70.7 98.5 99.5 84.1 98.1 99.8 100. 92.7 99.3
#> 7 7 93.6 68.4 98.3 99.4 82.8 97.9 99.8 100. 92.0 99.2
#> 8 8 93.0 66.1 98.2 99.4 81.3 97.7 99.8 100. 91.3 99.2
#> 9 9 92.3 63.7 98.0 99.3 79.7 97.6 99.8 100. 90.5 99.1
#> 10 10 91.6 61.2 97.9 99.3 78.0 97.3 99.8 100. 89.6 99.0
#> # ℹ 90 more rows
#> # ℹ 5 more variables: ppp500 <dbl>, percentile20 <dbl>, percentile40 <dbl>,
#> # percentile60 <dbl>, percentile80 <dbl>
# Given a specific PPI score (from 0 - 100), get the row of poverty
# probabilities from PPI table it corresponds to
ppiScore <- 50
ppiMWI2020[ppiMWI2020$score == ppiScore, ]
#> # A tibble: 1 × 16
#> score nl100 extreme nl150 nl200 ppp100 ppp190 ppp320 ppp550 ppp125 ppp250
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 50 19.4 2.27 62.3 83.3 6.00 56.1 92.4 99.3 15.2 79.7
#> # ℹ 5 more variables: ppp500 <dbl>, percentile20 <dbl>, percentile40 <dbl>,
#> # percentile60 <dbl>, percentile80 <dbl>
# Use subset() function to get the row of poverty probabilities corresponding
# to specific PPI score
ppiScore <- 50
subset(ppiMWI2020, score == ppiScore)
#> # A tibble: 1 × 16
#> score nl100 extreme nl150 nl200 ppp100 ppp190 ppp320 ppp550 ppp125 ppp250
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 50 19.4 2.27 62.3 83.3 6.00 56.1 92.4 99.3 15.2 79.7
#> # ℹ 5 more variables: ppp500 <dbl>, percentile20 <dbl>, percentile40 <dbl>,
#> # percentile60 <dbl>, percentile80 <dbl>
# Given a specific PPI score (from 0 - 100), get a poverty probability
# based on a specific poverty definition. In this example, the USAID
# extreme poverty definition
ppiScore <- 50
ppiMWI2020[ppiMWI2020$score == ppiScore, "nl100"]
#> # A tibble: 1 × 1
#> nl100
#> <dbl>
#> 1 19.4
