Poverty Probability Index (PPI) lookup table for Malawi
Format
A data frame with 16 columns and 101 rows:
score
PPI score
nl100
National poverty line (100%)
extreme
Extreme poverty line
nl150
National poverty line (150%)
nl200
National poverty line (200%)
ppp100
Below $1.00 per day purchasing power parity (2011)
ppp190
Below $1.90 per day purchasing power parity (2011)
ppp320
Below $3.20 per day purchasing power parity (2011)
ppp550
Below $5.50 per day purchasing power parity (2011)
ppp125
Below $1.25 per day purchasing power parity (2005)
ppp250
Below $2.50 per day purchasing power parity (2005)
ppp500
Below $5.00 per day purchasing power parity (2005)
percentile20
Below 20th percentile poverty line
percentile40
Below 40th percentile poverty line
percentile60
Below 50th percentile poverty line
percentile80
Below 60th percentile poverty line
Examples
# Access Malawi PPI table
ppiMWI2020
#> # A tibble: 100 × 16
#> score nl100 extreme nl150 nl200 ppp100 ppp190 ppp320 ppp550 ppp125 ppp250
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 1 96.3 80.3 99.0 99.6 89.8 98.7 99.9 100. 95.4 99.5
#> 2 2 95.9 78.6 98.9 99.6 88.8 98.6 99.9 100. 94.9 99.5
#> 3 3 95.5 76.8 98.8 99.6 87.8 98.5 99.9 100. 94.4 99.4
#> 4 4 95.1 74.8 98.7 99.6 86.6 98.4 99.9 100. 93.9 99.4
#> 5 5 94.6 72.8 98.6 99.5 85.4 98.2 99.8 100. 93.3 99.3
#> 6 6 94.1 70.7 98.5 99.5 84.1 98.1 99.8 100. 92.7 99.3
#> 7 7 93.6 68.4 98.3 99.4 82.8 97.9 99.8 100. 92.0 99.2
#> 8 8 93.0 66.1 98.2 99.4 81.3 97.7 99.8 100. 91.3 99.2
#> 9 9 92.3 63.7 98.0 99.3 79.7 97.6 99.8 100. 90.5 99.1
#> 10 10 91.6 61.2 97.9 99.3 78.0 97.3 99.8 100. 89.6 99.0
#> # ℹ 90 more rows
#> # ℹ 5 more variables: ppp500 <dbl>, percentile20 <dbl>, percentile40 <dbl>,
#> # percentile60 <dbl>, percentile80 <dbl>
# Given a specific PPI score (from 0 - 100), get the row of poverty
# probabilities from PPI table it corresponds to
ppiScore <- 50
ppiMWI2020[ppiMWI2020$score == ppiScore, ]
#> # A tibble: 1 × 16
#> score nl100 extreme nl150 nl200 ppp100 ppp190 ppp320 ppp550 ppp125 ppp250
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 50 19.4 2.27 62.3 83.3 6.00 56.1 92.4 99.3 15.2 79.7
#> # ℹ 5 more variables: ppp500 <dbl>, percentile20 <dbl>, percentile40 <dbl>,
#> # percentile60 <dbl>, percentile80 <dbl>
# Use subset() function to get the row of poverty probabilities corresponding
# to specific PPI score
ppiScore <- 50
subset(ppiMWI2020, score == ppiScore)
#> # A tibble: 1 × 16
#> score nl100 extreme nl150 nl200 ppp100 ppp190 ppp320 ppp550 ppp125 ppp250
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 50 19.4 2.27 62.3 83.3 6.00 56.1 92.4 99.3 15.2 79.7
#> # ℹ 5 more variables: ppp500 <dbl>, percentile20 <dbl>, percentile40 <dbl>,
#> # percentile60 <dbl>, percentile80 <dbl>
# Given a specific PPI score (from 0 - 100), get a poverty probability
# based on a specific poverty definition. In this example, the USAID
# extreme poverty definition
ppiScore <- 50
ppiMWI2020[ppiMWI2020$score == ppiScore, "nl100"]
#> # A tibble: 1 × 1
#> nl100
#> <dbl>
#> 1 19.4