Skip to contents

Poverty Probability Index (PPI) lookup table for Malawi using government poverty definitions

Usage

ppiMWI2015_gov

Format

A data frame with 14 columns and 101 rows:

score

PPI score

nlFood

Food poverty line

nl100

National poverty line (100%)

nl150

National poverty line (150%)

nl200

National poverty line (200%)

half100

Poorest half below 100% national

ppp125

Below $1.25 per day purchasing power parity (2005)

ppp200

Below $2.00 per day purchasing power parity (2005)

ppp250

Below $2.50 per day purchasing power parity (2005)

ppp500

Below $5.00 per day purchasing power parity (2005)

ppp844

Below $8.44 per day purchasing power parity (2005)

ppp190

Below $1.90 per day purchasing power parity (2011)

ppp310

Below $3.10 per day purchasing power parity (2011)

ppp1000

Below $10.00 per day purchasing power parity (2011)

Examples

  # Access Malawi PPI table
  ppiMWI2015_gov
#>     score nlFood nl100 nl150 nl200 half100 ppp125 ppp200 ppp250 ppp500 ppp844
#> 0       0  100.0 100.0 100.0 100.0   100.0  100.0  100.0  100.0  100.0  100.0
#> 1       1  100.0 100.0 100.0 100.0   100.0  100.0  100.0  100.0  100.0  100.0
#> 2       2  100.0 100.0 100.0 100.0   100.0  100.0  100.0  100.0  100.0  100.0
#> 3       3  100.0 100.0 100.0 100.0   100.0  100.0  100.0  100.0  100.0  100.0
#> 4       4  100.0 100.0 100.0 100.0   100.0  100.0  100.0  100.0  100.0  100.0
#> 5       5   81.3  97.1  99.7 100.0    81.3   99.7  100.0  100.0  100.0  100.0
#> 6       6   81.3  97.1  99.7 100.0    81.3   99.7  100.0  100.0  100.0  100.0
#> 7       7   81.3  97.1  99.7 100.0    81.3   99.7  100.0  100.0  100.0  100.0
#> 8       8   81.3  97.1  99.7 100.0    81.3   99.7  100.0  100.0  100.0  100.0
#> 9       9   81.3  97.1  99.7 100.0    81.3   99.7  100.0  100.0  100.0  100.0
#> 10     10   71.8  95.7  98.6 100.0    73.3   98.6  100.0  100.0  100.0  100.0
#> 11     11   71.8  95.7  98.6 100.0    73.3   98.6  100.0  100.0  100.0  100.0
#> 12     12   71.8  95.7  98.6 100.0    73.3   98.6  100.0  100.0  100.0  100.0
#> 13     13   71.8  95.7  98.6 100.0    73.3   98.6  100.0  100.0  100.0  100.0
#> 14     14   71.8  95.7  98.6 100.0    73.3   98.6  100.0  100.0  100.0  100.0
#> 15     15   70.3  94.4  98.5 100.0    72.3   98.5  100.0  100.0  100.0  100.0
#> 16     16   70.3  94.4  98.5 100.0    72.3   98.5  100.0  100.0  100.0  100.0
#> 17     17   70.3  94.4  98.5 100.0    72.3   98.5  100.0  100.0  100.0  100.0
#> 18     18   70.3  94.4  98.5 100.0    72.3   98.5  100.0  100.0  100.0  100.0
#> 19     19   70.3  94.4  98.5 100.0    72.3   98.5  100.0  100.0  100.0  100.0
#> 20     20   55.7  87.4  96.3  98.6    60.3   95.8   99.3   99.9  100.0  100.0
#> 21     21   55.7  87.4  96.3  98.6    60.3   95.8   99.3   99.9  100.0  100.0
#> 22     22   55.7  87.4  96.3  98.6    60.3   95.8   99.3   99.9  100.0  100.0
#> 23     23   55.7  87.4  96.3  98.6    60.3   95.8   99.3   99.9  100.0  100.0
#> 24     24   55.7  87.4  96.3  98.6    60.3   95.8   99.3   99.9  100.0  100.0
#> 25     25   49.9  80.0  94.7  98.1    51.3   92.9   98.8   99.6  100.0  100.0
#> 26     26   49.9  80.0  94.7  98.1    51.3   92.9   98.8   99.6  100.0  100.0
#> 27     27   49.9  80.0  94.7  98.1    51.3   92.9   98.8   99.6  100.0  100.0
#> 28     28   49.9  80.0  94.7  98.1    51.3   92.9   98.8   99.6  100.0  100.0
#> 29     29   49.9  80.0  94.7  98.1    51.3   92.9   98.8   99.6  100.0  100.0
#> 30     30   36.4  72.0  94.7  97.6    37.4   91.3   98.5   99.6  100.0  100.0
#> 31     31   36.4  72.0  94.7  97.6    37.4   91.3   98.5   99.6  100.0  100.0
#> 32     32   36.4  72.0  94.7  97.6    37.4   91.3   98.5   99.6  100.0  100.0
#> 33     33   36.4  72.0  94.7  97.6    37.4   91.3   98.5   99.6  100.0  100.0
#> 34     34   36.4  72.0  94.7  97.6    37.4   91.3   98.5   99.6  100.0  100.0
#> 35     35   27.6  70.2  90.1  96.4    29.0   88.5   97.5   99.5  100.0  100.0
#> 36     36   27.6  70.2  90.1  96.4    29.0   88.5   97.5   99.5  100.0  100.0
#> 37     37   27.6  70.2  90.1  96.4    29.0   88.5   97.5   99.5  100.0  100.0
#> 38     38   27.6  70.2  90.1  96.4    29.0   88.5   97.5   99.5  100.0  100.0
#> 39     39   27.6  70.2  90.1  96.4    29.0   88.5   97.5   99.5  100.0  100.0
#> 40     40   21.5  57.4  82.7  93.2    23.6   79.8   96.3   98.9  100.0  100.0
#> 41     41   21.5  57.4  82.7  93.2    23.6   79.8   96.3   98.9  100.0  100.0
#> 42     42   21.5  57.4  82.7  93.2    23.6   79.8   96.3   98.9  100.0  100.0
#> 43     43   21.5  57.4  82.7  93.2    23.6   79.8   96.3   98.9  100.0  100.0
#> 44     44   21.5  57.4  82.7  93.2    23.6   79.8   96.3   98.9  100.0  100.0
#> 45     45   16.5  47.9  76.8  90.3    18.0   71.4   93.4   97.0  100.0  100.0
#> 46     46   16.5  47.9  76.8  90.3    18.0   71.4   93.4   97.0  100.0  100.0
#> 47     47   16.5  47.9  76.8  90.3    18.0   71.4   93.4   97.0  100.0  100.0
#> 48     48   16.5  47.9  76.8  90.3    18.0   71.4   93.4   97.0  100.0  100.0
#> 49     49   16.5  47.9  76.8  90.3    18.0   71.4   93.4   97.0  100.0  100.0
#> 50     50    9.4  30.5  57.1  80.5     9.1   52.1   86.2   92.2   99.8  100.0
#> 51     51    9.4  30.5  57.1  80.5     9.1   52.1   86.2   92.2   99.8  100.0
#> 52     52    9.4  30.5  57.1  80.5     9.1   52.1   86.2   92.2   99.8  100.0
#> 53     53    9.4  30.5  57.1  80.5     9.1   52.1   86.2   92.2   99.8  100.0
#> 54     54    9.4  30.5  57.1  80.5     9.1   52.1   86.2   92.2   99.8  100.0
#> 55     55    5.6  24.9  48.9  74.4     6.1   46.2   81.5   88.2   98.7   99.8
#> 56     56    5.6  24.9  48.9  74.4     6.1   46.2   81.5   88.2   98.7   99.8
#> 57     57    5.6  24.9  48.9  74.4     6.1   46.2   81.5   88.2   98.7   99.8
#> 58     58    5.6  24.9  48.9  74.4     6.1   46.2   81.5   88.2   98.7   99.8
#> 59     59    5.6  24.9  48.9  74.4     6.1   46.2   81.5   88.2   98.7   99.8
#> 60     60    4.0  20.0  44.1  67.1     3.7   41.1   72.3   82.4   96.5   98.9
#> 61     61    4.0  20.0  44.1  67.1     3.7   41.1   72.3   82.4   96.5   98.9
#> 62     62    4.0  20.0  44.1  67.1     3.7   41.1   72.3   82.4   96.5   98.9
#> 63     63    4.0  20.0  44.1  67.1     3.7   41.1   72.3   82.4   96.5   98.9
#> 64     64    4.0  20.0  44.1  67.1     3.7   41.1   72.3   82.4   96.5   98.9
#> 65     65    2.2  12.4  34.1  53.0     2.2   30.5   63.3   77.0   95.8   98.4
#> 66     66    2.2  12.4  34.1  53.0     2.2   30.5   63.3   77.0   95.8   98.4
#> 67     67    2.2  12.4  34.1  53.0     2.2   30.5   63.3   77.0   95.8   98.4
#> 68     68    2.2  12.4  34.1  53.0     2.2   30.5   63.3   77.0   95.8   98.4
#> 69     69    2.2  12.4  34.1  53.0     2.2   30.5   63.3   77.0   95.8   98.4
#> 70     70    1.0   6.5  23.3  38.3     0.7   20.8   48.3   62.4   90.6   97.4
#> 71     71    1.0   6.5  23.3  38.3     0.7   20.8   48.3   62.4   90.6   97.4
#> 72     72    1.0   6.5  23.3  38.3     0.7   20.8   48.3   62.4   90.6   97.4
#> 73     73    1.0   6.5  23.3  38.3     0.7   20.8   48.3   62.4   90.6   97.4
#> 74     74    1.0   6.5  23.3  38.3     0.7   20.8   48.3   62.4   90.6   97.4
#> 75     75    0.6   5.3  17.7  31.2     0.6   15.8   39.2   52.1   87.0   95.7
#> 76     76    0.6   5.3  17.7  31.2     0.6   15.8   39.2   52.1   87.0   95.7
#> 77     77    0.6   5.3  17.7  31.2     0.6   15.8   39.2   52.1   87.0   95.7
#> 78     78    0.6   5.3  17.7  31.2     0.6   15.8   39.2   52.1   87.0   95.7
#> 79     79    0.6   5.3  17.7  31.2     0.6   15.8   39.2   52.1   87.0   95.7
#> 80     80    0.4   2.7  11.5  24.5     0.4    9.7   34.0   44.8   82.4   93.5
#> 81     81    0.4   2.7  11.5  24.5     0.4    9.7   34.0   44.8   82.4   93.5
#> 82     82    0.4   2.7  11.5  24.5     0.4    9.7   34.0   44.8   82.4   93.5
#> 83     83    0.4   2.7  11.5  24.5     0.4    9.7   34.0   44.8   82.4   93.5
#> 84     84    0.4   2.7  11.5  24.5     0.4    9.7   34.0   44.8   82.4   93.5
#> 85     85    0.0   1.1   3.7  13.3     0.0    3.7   15.9   23.6   73.3   90.8
#> 86     86    0.0   1.1   3.7  13.3     0.0    3.7   15.9   23.6   73.3   90.8
#> 87     87    0.0   1.1   3.7  13.3     0.0    3.7   15.9   23.6   73.3   90.8
#> 88     88    0.0   1.1   3.7  13.3     0.0    3.7   15.9   23.6   73.3   90.8
#> 89     89    0.0   1.1   3.7  13.3     0.0    3.7   15.9   23.6   73.3   90.8
#> 90     90    0.0   1.1   2.4   8.8     0.0    2.1   11.2   15.3   57.8   80.0
#> 91     91    0.0   1.1   2.4   8.8     0.0    2.1   11.2   15.3   57.8   80.0
#> 92     92    0.0   1.1   2.4   8.8     0.0    2.1   11.2   15.3   57.8   80.0
#> 93     93    0.0   1.1   2.4   8.8     0.0    2.1   11.2   15.3   57.8   80.0
#> 94     94    0.0   1.1   2.4   8.8     0.0    2.1   11.2   15.3   57.8   80.0
#> 95     95    0.0   0.0   0.0   0.6     0.0    0.0    3.4   10.1   49.6   69.1
#> 96     96    0.0   0.0   0.0   0.6     0.0    0.0    3.4   10.1   49.6   69.1
#> 97     97    0.0   0.0   0.0   0.6     0.0    0.0    3.4   10.1   49.6   69.1
#> 98     98    0.0   0.0   0.0   0.6     0.0    0.0    3.4   10.1   49.6   69.1
#> 99     99    0.0   0.0   0.0   0.6     0.0    0.0    3.4   10.1   49.6   69.1
#> 100   100    0.0   0.0   0.0   0.6     0.0    0.0    3.4   10.1   49.6   69.1
#>     ppp190 ppp310 ppp1000
#> 0    100.0  100.0   100.0
#> 1    100.0  100.0   100.0
#> 2    100.0  100.0   100.0
#> 3    100.0  100.0   100.0
#> 4    100.0  100.0   100.0
#> 5    100.0  100.0   100.0
#> 6    100.0  100.0   100.0
#> 7    100.0  100.0   100.0
#> 8    100.0  100.0   100.0
#> 9    100.0  100.0   100.0
#> 10   100.0  100.0   100.0
#> 11   100.0  100.0   100.0
#> 12   100.0  100.0   100.0
#> 13   100.0  100.0   100.0
#> 14   100.0  100.0   100.0
#> 15   100.0  100.0   100.0
#> 16   100.0  100.0   100.0
#> 17   100.0  100.0   100.0
#> 18   100.0  100.0   100.0
#> 19   100.0  100.0   100.0
#> 20    97.9   99.9   100.0
#> 21    97.9   99.9   100.0
#> 22    97.9   99.9   100.0
#> 23    97.9   99.9   100.0
#> 24    97.9   99.9   100.0
#> 25    96.4   99.6   100.0
#> 26    96.4   99.6   100.0
#> 27    96.4   99.6   100.0
#> 28    96.4   99.6   100.0
#> 29    96.4   99.6   100.0
#> 30    96.4   99.6   100.0
#> 31    96.4   99.6   100.0
#> 32    96.4   99.6   100.0
#> 33    96.4   99.6   100.0
#> 34    96.4   99.6   100.0
#> 35    94.5   99.6   100.0
#> 36    94.5   99.6   100.0
#> 37    94.5   99.6   100.0
#> 38    94.5   99.6   100.0
#> 39    94.5   99.6   100.0
#> 40    88.7   99.2   100.0
#> 41    88.7   99.2   100.0
#> 42    88.7   99.2   100.0
#> 43    88.7   99.2   100.0
#> 44    88.7   99.2   100.0
#> 45    84.9   97.2   100.0
#> 46    84.9   97.2   100.0
#> 47    84.9   97.2   100.0
#> 48    84.9   97.2   100.0
#> 49    84.9   97.2   100.0
#> 50    69.1   92.2   100.0
#> 51    69.1   92.2   100.0
#> 52    69.1   92.2   100.0
#> 53    69.1   92.2   100.0
#> 54    69.1   92.2   100.0
#> 55    64.3   88.3    99.8
#> 56    64.3   88.3    99.8
#> 57    64.3   88.3    99.8
#> 58    64.3   88.3    99.8
#> 59    64.3   88.3    99.8
#> 60    56.5   82.7    99.1
#> 61    56.5   82.7    99.1
#> 62    56.5   82.7    99.1
#> 63    56.5   82.7    99.1
#> 64    56.5   82.7    99.1
#> 65    43.6   77.3    98.8
#> 66    43.6   77.3    98.8
#> 67    43.6   77.3    98.8
#> 68    43.6   77.3    98.8
#> 69    43.6   77.3    98.8
#> 70    31.1   62.5    97.8
#> 71    31.1   62.5    97.8
#> 72    31.1   62.5    97.8
#> 73    31.1   62.5    97.8
#> 74    31.1   62.5    97.8
#> 75    24.5   52.6    96.4
#> 76    24.5   52.6    96.4
#> 77    24.5   52.6    96.4
#> 78    24.5   52.6    96.4
#> 79    24.5   52.6    96.4
#> 80    18.0   47.1    95.8
#> 81    18.0   47.1    95.8
#> 82    18.0   47.1    95.8
#> 83    18.0   47.1    95.8
#> 84    18.0   47.1    95.8
#> 85     9.4   23.6    92.6
#> 86     9.4   23.6    92.6
#> 87     9.4   23.6    92.6
#> 88     9.4   23.6    92.6
#> 89     9.4   23.6    92.6
#> 90     6.1   15.3    85.4
#> 91     6.1   15.3    85.4
#> 92     6.1   15.3    85.4
#> 93     6.1   15.3    85.4
#> 94     6.1   15.3    85.4
#> 95     0.6   10.1    72.5
#> 96     0.6   10.1    72.5
#> 97     0.6   10.1    72.5
#> 98     0.6   10.1    72.5
#> 99     0.6   10.1    72.5
#> 100    0.6   10.1    72.5

  # Given a specific PPI score (from 0 - 100), get the row of poverty
  # probabilities from PPI table it corresponds to
  ppiScore <- 50
  ppiMWI2015_gov[ppiMWI2015_gov$score == ppiScore, ]
#>    score nlFood nl100 nl150 nl200 half100 ppp125 ppp200 ppp250 ppp500 ppp844
#> 50    50    9.4  30.5  57.1  80.5     9.1   52.1   86.2   92.2   99.8    100
#>    ppp190 ppp310 ppp1000
#> 50   69.1   92.2     100

  # Use subset() function to get the row of poverty probabilities corresponding
  # to specific PPI score
  ppiScore <- 50
  subset(ppiMWI2015_gov, score == ppiScore)
#>    score nlFood nl100 nl150 nl200 half100 ppp125 ppp200 ppp250 ppp500 ppp844
#> 50    50    9.4  30.5  57.1  80.5     9.1   52.1   86.2   92.2   99.8    100
#>    ppp190 ppp310 ppp1000
#> 50   69.1   92.2     100

  # Given a specific PPI score (from 0 - 100), get a poverty probability
  # based on a specific poverty definition. In this example, the national
  # poverty line definition
  ppiScore <- 50
  ppiMWI2015_gov[ppiMWI2015_gov$score == ppiScore, "nl100"]
#> [1] 30.5