Skip to contents

Poverty Probability Index (PPI) lookup table for Mozambique

Usage

ppiMOZ2019

Format

A data frame with 15 columns and 101 rows:

score

PPI score

nl100

National poverty line (100)

nl150

National poverty line (150)

nl200

National poverty line (200)

ppp190

Below $1.90 per day purchasing power parity (2011)

ppp320

Below $3.20 per day purchasing power parity (2011)

ppp550

Below $5.50 per day purchasing power parity (2011)

ppp800

Below $8.00 per day purchasing power parity (2011)

ppp1100

Below $11.00 per day purchasing power parity (2011)

ppp1500

Below $15.00 per day purchasing power parity (2011)

ppp2170

Below $21.70 per day purchasing power parity (2011)

percentile20

Below 20th percentile poverty line

percentile40

Below 40th percentile poverty line

percentile60

Below 50th percentile poverty line

percentile80

Below 60th percentile poverty line

Examples

  # Access Mozambique PPI table
  ppiMOZ2019
#> # A tibble: 101 × 15
#>    score nl100 nl150 nl200 ppp190 ppp320 ppp550 ppp800 ppp1100 ppp1500 ppp2170
#>    <dbl> <dbl> <dbl> <dbl>  <dbl>  <dbl>  <dbl>  <dbl>   <dbl>   <dbl>   <dbl>
#>  1     0  91    96.9  98.6   95.4   98.6   99.8   99.9     100     100     100
#>  2     1  90.3  96.6  98.5   95     98.5   99.8   99.9     100     100     100
#>  3     2  89.5  96.3  98.4   94.6   98.4   99.7   99.9     100     100     100
#>  4     3  88.7  96    98.2   94.1   98.2   99.7   99.9     100     100     100
#>  5     4  87.8  95.6  98     93.6   98.1   99.7   99.9     100     100     100
#>  6     5  86.9  95.2  97.8   93.1   97.9   99.6   99.9     100     100     100
#>  7     6  85.9  94.8  97.7   92.5   97.7   99.6   99.9     100     100     100
#>  8     7  84.8  94.3  97.4   91.8   97.5   99.6   99.9     100     100     100
#>  9     8  83.6  93.8  97.2   91.2   97.3   99.5   99.9     100     100     100
#> 10     9  82.4  93.3  96.9   90.4   97     99.5   99.9     100     100     100
#> # ℹ 91 more rows
#> # ℹ 4 more variables: percentile20 <dbl>, percentile40 <dbl>,
#> #   percentile60 <dbl>, percentile80 <dbl>

  # Given a specific PPI score (from 0 - 100), get the row of poverty
  # probabilities from PPI table it corresponds to
  ppiScore <- 50
  ppiMOZ2019[ppiMOZ2019$score == ppiScore, ]
#> # A tibble: 1 × 15
#>   score nl100 nl150 nl200 ppp190 ppp320 ppp550 ppp800 ppp1100 ppp1500 ppp2170
#>   <dbl> <dbl> <dbl> <dbl>  <dbl>  <dbl>  <dbl>  <dbl>   <dbl>   <dbl>   <dbl>
#> 1    50  12.2  26.2  43.2   20.3     46   81.1     92    97.6    98.2    99.3
#> # ℹ 4 more variables: percentile20 <dbl>, percentile40 <dbl>,
#> #   percentile60 <dbl>, percentile80 <dbl>

  # Use subset() function to get the row of poverty probabilities corresponding
  # to specific PPI score
  ppiScore <- 50
  subset(ppiMOZ2019, score == ppiScore)
#> # A tibble: 1 × 15
#>   score nl100 nl150 nl200 ppp190 ppp320 ppp550 ppp800 ppp1100 ppp1500 ppp2170
#>   <dbl> <dbl> <dbl> <dbl>  <dbl>  <dbl>  <dbl>  <dbl>   <dbl>   <dbl>   <dbl>
#> 1    50  12.2  26.2  43.2   20.3     46   81.1     92    97.6    98.2    99.3
#> # ℹ 4 more variables: percentile20 <dbl>, percentile40 <dbl>,
#> #   percentile60 <dbl>, percentile80 <dbl>

  # Given a specific PPI score (from 0 - 100), get a poverty probability
  # based on a specific poverty definition. In this example, the national
  # poverty line is used
  ppiScore <- 50
  ppiMOZ2019[ppiMOZ2019$score == ppiScore, "nl100"]
#> # A tibble: 1 × 1
#>   nl100
#>   <dbl>
#> 1  12.2