Poverty Probability Index (PPI) lookup table for Mozambique
Format
A data frame with 15 columns and 101 rows:
score
PPI score
nl100
National poverty line (100)
nl150
National poverty line (150)
nl200
National poverty line (200)
ppp190
Below $1.90 per day purchasing power parity (2011)
ppp320
Below $3.20 per day purchasing power parity (2011)
ppp550
Below $5.50 per day purchasing power parity (2011)
ppp800
Below $8.00 per day purchasing power parity (2011)
ppp1100
Below $11.00 per day purchasing power parity (2011)
ppp1500
Below $15.00 per day purchasing power parity (2011)
ppp2170
Below $21.70 per day purchasing power parity (2011)
percentile20
Below 20th percentile poverty line
percentile40
Below 40th percentile poverty line
percentile60
Below 50th percentile poverty line
percentile80
Below 60th percentile poverty line
Examples
# Access Mozambique PPI table
ppiMOZ2019
#> # A tibble: 101 × 15
#> score nl100 nl150 nl200 ppp190 ppp320 ppp550 ppp800 ppp1100 ppp1500 ppp2170
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0 91 96.9 98.6 95.4 98.6 99.8 99.9 100 100 100
#> 2 1 90.3 96.6 98.5 95 98.5 99.8 99.9 100 100 100
#> 3 2 89.5 96.3 98.4 94.6 98.4 99.7 99.9 100 100 100
#> 4 3 88.7 96 98.2 94.1 98.2 99.7 99.9 100 100 100
#> 5 4 87.8 95.6 98 93.6 98.1 99.7 99.9 100 100 100
#> 6 5 86.9 95.2 97.8 93.1 97.9 99.6 99.9 100 100 100
#> 7 6 85.9 94.8 97.7 92.5 97.7 99.6 99.9 100 100 100
#> 8 7 84.8 94.3 97.4 91.8 97.5 99.6 99.9 100 100 100
#> 9 8 83.6 93.8 97.2 91.2 97.3 99.5 99.9 100 100 100
#> 10 9 82.4 93.3 96.9 90.4 97 99.5 99.9 100 100 100
#> # ℹ 91 more rows
#> # ℹ 4 more variables: percentile20 <dbl>, percentile40 <dbl>,
#> # percentile60 <dbl>, percentile80 <dbl>
# Given a specific PPI score (from 0 - 100), get the row of poverty
# probabilities from PPI table it corresponds to
ppiScore <- 50
ppiMOZ2019[ppiMOZ2019$score == ppiScore, ]
#> # A tibble: 1 × 15
#> score nl100 nl150 nl200 ppp190 ppp320 ppp550 ppp800 ppp1100 ppp1500 ppp2170
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 50 12.2 26.2 43.2 20.3 46 81.1 92 97.6 98.2 99.3
#> # ℹ 4 more variables: percentile20 <dbl>, percentile40 <dbl>,
#> # percentile60 <dbl>, percentile80 <dbl>
# Use subset() function to get the row of poverty probabilities corresponding
# to specific PPI score
ppiScore <- 50
subset(ppiMOZ2019, score == ppiScore)
#> # A tibble: 1 × 15
#> score nl100 nl150 nl200 ppp190 ppp320 ppp550 ppp800 ppp1100 ppp1500 ppp2170
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 50 12.2 26.2 43.2 20.3 46 81.1 92 97.6 98.2 99.3
#> # ℹ 4 more variables: percentile20 <dbl>, percentile40 <dbl>,
#> # percentile60 <dbl>, percentile80 <dbl>
# Given a specific PPI score (from 0 - 100), get a poverty probability
# based on a specific poverty definition. In this example, the national
# poverty line is used
ppiScore <- 50
ppiMOZ2019[ppiMOZ2019$score == ppiScore, "nl100"]
#> # A tibble: 1 × 1
#> nl100
#> <dbl>
#> 1 12.2