Poverty Probability Index (PPI) lookup table for Myanmar
Format
A data frame with 20 columns and 101 rows:
- score
- PPI score 
- nl100
- National poverty line (100) 
- extreme
- National poverty line (150) 
- nl150
- National poverty line (200) 
- nl200
- Below $1.90 per day purchasing power parity (2011) 
- ppp100
- Below $3.20 per day purchasing power parity (2011) 
- ppp190
- Below $5.50 per day purchasing power parity (2011) 
- ppp320
- Below $8.00 per day purchasing power parity (2011) 
- ppp550
- Below $11.00 per day purchasing power parity (2011) 
- ppp800
- Below $15.00 per day purchasing power parity (2011) 
- ppp1100
- Below $21.70 per day purchasing power parity (2011) 
- ppp1500
- Below 20th percentile poverty line 
- ppp2170
- Below 40th percentile poverty line 
- ppp125
- Below 50th percentile poverty line 
- ppp250
- Below 60th percentile poverty line 
- ppp500
- Below 80th percentile poverty line 
- percentile20
- NA 
- percentile40
- NA 
- percentile60
- NA 
- percentile80
- NA 
Examples
  # Access Myanmar PPI table
  ppiMMR2019
#> # A tibble: 101 × 20
#>    score nl100 extreme nl150 nl200 ppp100 ppp190 ppp320 ppp550 ppp800 ppp1100
#>    <dbl> <dbl>   <dbl> <dbl> <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>   <dbl>
#>  1     0  95.2    84.1  98.6  99.6  11.6    80.9   93.7   99.2   99.6    99.9
#>  2     1  94.8    82.8  98.5  99.6  10.8    79.4   93.2   99.2   99.6    99.9
#>  3     2  94.4    81.5  98.4  99.6  10.0    77.8   92.7   99.1   99.6    99.9
#>  4     3  93.9    80.1  98.3  99.5   9.27   76.0   92.1   99.0   99.5    99.9
#>  5     4  93.4    78.5  98.1  99.5   8.59   74.2   91.5   98.9   99.5    99.8
#>  6     5  92.9    77.0  98.0  99.5   7.95   72.3   90.9   98.8   99.4    99.8
#>  7     6  92.3    75.3  97.8  99.4   7.36   70.3   90.2   98.7   99.4    99.8
#>  8     7  91.7    73.5  97.7  99.4   6.81   68.2   89.5   98.6   99.4    99.8
#>  9     8  91.1    71.7  97.5  99.3   6.30   66.1   88.7   98.5   99.3    99.8
#> 10     9  90.4    69.8  97.3  99.2   5.82   63.8   87.9   98.4   99.3    99.8
#> # ℹ 91 more rows
#> # ℹ 9 more variables: ppp1500 <dbl>, ppp2170 <dbl>, ppp125 <dbl>, ppp250 <dbl>,
#> #   ppp500 <dbl>, percentile20 <dbl>, percentile40 <dbl>, percentile60 <dbl>,
#> #   percentile80 <dbl>
  # Given a specific PPI score (from 0 - 100), get the row of poverty
  # probabilities from PPI table it corresponds to
  ppiScore <- 50
  ppiMMR2019[ppiMMR2019$score == ppiScore, ]
#> # A tibble: 1 × 20
#>   score nl100 extreme nl150 nl200 ppp100 ppp190 ppp320 ppp550 ppp800 ppp1100
#>   <dbl> <dbl>   <dbl> <dbl> <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>   <dbl>
#> 1    50  24.5    5.01  58.9  79.9  0.199   3.13   21.3   70.2   85.4    94.5
#> # ℹ 9 more variables: ppp1500 <dbl>, ppp2170 <dbl>, ppp125 <dbl>, ppp250 <dbl>,
#> #   ppp500 <dbl>, percentile20 <dbl>, percentile40 <dbl>, percentile60 <dbl>,
#> #   percentile80 <dbl>
  # Use subset() function to get the row of poverty probabilities corresponding
  # to specific PPI score
  ppiScore <- 50
  subset(ppiMMR2019, score == ppiScore)
#> # A tibble: 1 × 20
#>   score nl100 extreme nl150 nl200 ppp100 ppp190 ppp320 ppp550 ppp800 ppp1100
#>   <dbl> <dbl>   <dbl> <dbl> <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>   <dbl>
#> 1    50  24.5    5.01  58.9  79.9  0.199   3.13   21.3   70.2   85.4    94.5
#> # ℹ 9 more variables: ppp1500 <dbl>, ppp2170 <dbl>, ppp125 <dbl>, ppp250 <dbl>,
#> #   ppp500 <dbl>, percentile20 <dbl>, percentile40 <dbl>, percentile60 <dbl>,
#> #   percentile80 <dbl>
  # Given a specific PPI score (from 0 - 100), get a poverty probability
  # based on a specific poverty definition. In this example, the USAID
  # extreme poverty definition
  ppiScore <- 50
  ppiMMR2019[ppiMMR2019$score == ppiScore, "extreme"]
#> # A tibble: 1 × 1
#>   extreme
#>     <dbl>
#> 1    5.01
