Skip to contents

Poverty Probability Index (PPI) lookup table for Myanmar

Usage

ppiMMR2012

Format

A data frame with 8 columns and 101 rows:

score

PPI score

nlFood

Food poverty line

nl100

National poverty line (100%)

nl150

National poverty line (150%)

nl200

National poverty line (200%)

extreme

USAID extreme poverty

ppp125

Below $1.25 per day purchasing power parity (2005)

ppp250

Below $2.50 per day purchasing power parity (2005)

Examples

  # Access Myanmar PPI table
  ppiMMR2012
#>     score nlFood nl100 nl150 nl200 extreme ppp125 ppp250
#> 0       0   30.0  83.4 100.0 100.0    71.1   95.2  100.0
#> 1       1   30.0  83.4 100.0 100.0    71.1   95.2  100.0
#> 2       2   30.0  83.4 100.0 100.0    71.1   95.2  100.0
#> 3       3   30.0  83.4 100.0 100.0    71.1   95.2  100.0
#> 4       4   30.0  83.4 100.0 100.0    71.1   95.2  100.0
#> 5       5   30.0  76.1 100.0 100.0    51.7   87.9  100.0
#> 6       6   30.0  76.1 100.0 100.0    51.7   87.9  100.0
#> 7       7   30.0  76.1 100.0 100.0    51.7   87.9  100.0
#> 8       8   30.0  76.1 100.0 100.0    51.7   87.9  100.0
#> 9       9   30.0  76.1 100.0 100.0    51.7   87.9  100.0
#> 10     10   25.4  68.6  96.8  99.6    44.1   84.1   99.8
#> 11     11   25.4  68.6  96.8  99.6    44.1   84.1   99.8
#> 12     12   25.4  68.6  96.8  99.6    44.1   84.1   99.8
#> 13     13   25.4  68.6  96.8  99.6    44.1   84.1   99.8
#> 14     14   25.4  68.6  96.8  99.6    44.1   84.1   99.8
#> 15     15   12.2  60.4  95.7  99.4    33.4   74.6   99.8
#> 16     16   12.2  60.4  95.7  99.4    33.4   74.6   99.8
#> 17     17   12.2  60.4  95.7  99.4    33.4   74.6   99.8
#> 18     18   12.2  60.4  95.7  99.4    33.4   74.6   99.8
#> 19     19   12.2  60.4  95.7  99.4    33.4   74.6   99.8
#> 20     20    9.1  48.8  93.5  99.4    24.5   61.1   99.8
#> 21     21    9.1  48.8  93.5  99.4    24.5   61.1   99.8
#> 22     22    9.1  48.8  93.5  99.4    24.5   61.1   99.8
#> 23     23    9.1  48.8  93.5  99.4    24.5   61.1   99.8
#> 24     24    9.1  48.8  93.5  99.4    24.5   61.1   99.8
#> 25     25    6.8  41.6  92.4  99.3    18.2   49.7   99.7
#> 26     26    6.8  41.6  92.4  99.3    18.2   49.7   99.7
#> 27     27    6.8  41.6  92.4  99.3    18.2   49.7   99.7
#> 28     28    6.8  41.6  92.4  99.3    18.2   49.7   99.7
#> 29     29    6.8  41.6  92.4  99.3    18.2   49.7   99.7
#> 30     30    4.4  29.5  88.4  99.2    13.0   35.1   99.1
#> 31     31    4.4  29.5  88.4  99.2    13.0   35.1   99.1
#> 32     32    4.4  29.5  88.4  99.2    13.0   35.1   99.1
#> 33     33    4.4  29.5  88.4  99.2    13.0   35.1   99.1
#> 34     34    4.4  29.5  88.4  99.2    13.0   35.1   99.1
#> 35     35    3.2  23.3  84.7  98.2    10.7   27.2   97.5
#> 36     36    3.2  23.3  84.7  98.2    10.7   27.2   97.5
#> 37     37    3.2  23.3  84.7  98.2    10.7   27.2   97.5
#> 38     38    3.2  23.3  84.7  98.2    10.7   27.2   97.5
#> 39     39    3.2  23.3  84.7  98.2    10.7   27.2   97.5
#> 40     40    1.0  15.0  70.5  95.4     5.5   16.3   93.8
#> 41     41    1.0  15.0  70.5  95.4     5.5   16.3   93.8
#> 42     42    1.0  15.0  70.5  95.4     5.5   16.3   93.8
#> 43     43    1.0  15.0  70.5  95.4     5.5   16.3   93.8
#> 44     44    1.0  15.0  70.5  95.4     5.5   16.3   93.8
#> 45     45    0.7  10.6  62.9  92.4     3.6    9.7   89.2
#> 46     46    0.7  10.6  62.9  92.4     3.6    9.7   89.2
#> 47     47    0.7  10.6  62.9  92.4     3.6    9.7   89.2
#> 48     48    0.7  10.6  62.9  92.4     3.6    9.7   89.2
#> 49     49    0.7  10.6  62.9  92.4     3.6    9.7   89.2
#> 50     50    0.2   7.4  55.9  88.4     2.0    5.2   85.6
#> 51     51    0.2   7.4  55.9  88.4     2.0    5.2   85.6
#> 52     52    0.2   7.4  55.9  88.4     2.0    5.2   85.6
#> 53     53    0.2   7.4  55.9  88.4     2.0    5.2   85.6
#> 54     54    0.2   7.4  55.9  88.4     2.0    5.2   85.6
#> 55     55    0.0   3.5  41.0  80.4     1.2    4.0   73.3
#> 56     56    0.0   3.5  41.0  80.4     1.2    4.0   73.3
#> 57     57    0.0   3.5  41.0  80.4     1.2    4.0   73.3
#> 58     58    0.0   3.5  41.0  80.4     1.2    4.0   73.3
#> 59     59    0.0   3.5  41.0  80.4     1.2    4.0   73.3
#> 60     60    0.0   1.2  28.8  69.5     0.4    0.8   61.4
#> 61     61    0.0   1.2  28.8  69.5     0.4    0.8   61.4
#> 62     62    0.0   1.2  28.8  69.5     0.4    0.8   61.4
#> 63     63    0.0   1.2  28.8  69.5     0.4    0.8   61.4
#> 64     64    0.0   1.2  28.8  69.5     0.4    0.8   61.4
#> 65     65    0.0   1.0  22.7  57.6     0.0    0.6   49.5
#> 66     66    0.0   1.0  22.7  57.6     0.0    0.6   49.5
#> 67     67    0.0   1.0  22.7  57.6     0.0    0.6   49.5
#> 68     68    0.0   1.0  22.7  57.6     0.0    0.6   49.5
#> 69     69    0.0   1.0  22.7  57.6     0.0    0.6   49.5
#> 70     70    0.0   0.3  14.9  49.1     0.0    0.2   37.5
#> 71     71    0.0   0.3  14.9  49.1     0.0    0.2   37.5
#> 72     72    0.0   0.3  14.9  49.1     0.0    0.2   37.5
#> 73     73    0.0   0.3  14.9  49.1     0.0    0.2   37.5
#> 74     74    0.0   0.3  14.9  49.1     0.0    0.2   37.5
#> 75     75    0.0   0.0   9.3  47.8     0.0    0.0   27.3
#> 76     76    0.0   0.0   9.3  47.8     0.0    0.0   27.3
#> 77     77    0.0   0.0   9.3  47.8     0.0    0.0   27.3
#> 78     78    0.0   0.0   9.3  47.8     0.0    0.0   27.3
#> 79     79    0.0   0.0   9.3  47.8     0.0    0.0   27.3
#> 80     80    0.0   0.0   4.3  44.6     0.0    0.0   18.6
#> 81     81    0.0   0.0   4.3  44.6     0.0    0.0   18.6
#> 82     82    0.0   0.0   4.3  44.6     0.0    0.0   18.6
#> 83     83    0.0   0.0   4.3  44.6     0.0    0.0   18.6
#> 84     84    0.0   0.0   4.3  44.6     0.0    0.0   18.6
#> 85     85    0.0   0.0   3.9  31.9     0.0    0.0   12.1
#> 86     86    0.0   0.0   3.9  31.9     0.0    0.0   12.1
#> 87     87    0.0   0.0   3.9  31.9     0.0    0.0   12.1
#> 88     88    0.0   0.0   3.9  31.9     0.0    0.0   12.1
#> 89     89    0.0   0.0   3.9  31.9     0.0    0.0   12.1
#> 90     90    0.0   0.0   0.0  31.9     0.0    0.0    0.0
#> 91     91    0.0   0.0   0.0  31.9     0.0    0.0    0.0
#> 92     92    0.0   0.0   0.0  31.9     0.0    0.0    0.0
#> 93     93    0.0   0.0   0.0  31.9     0.0    0.0    0.0
#> 94     94    0.0   0.0   0.0  31.9     0.0    0.0    0.0
#> 95     95    0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 96     96    0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 97     97    0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 98     98    0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 99     99    0.0   0.0   0.0   0.0     0.0    0.0    0.0
#> 100   100    0.0   0.0   0.0   0.0     0.0    0.0    0.0

  # Given a specific PPI score (from 0 - 100), get the row of poverty
  # probabilities from PPI table it corresponds to
  ppiScore <- 50
  ppiMMR2012[ppiMMR2012$score == ppiScore, ]
#>    score nlFood nl100 nl150 nl200 extreme ppp125 ppp250
#> 50    50    0.2   7.4  55.9  88.4       2    5.2   85.6

  # Use subset() function to get the row of poverty probabilities corresponding
  # to specific PPI score
  ppiScore <- 50
  subset(ppiMMR2012, score == ppiScore)
#>    score nlFood nl100 nl150 nl200 extreme ppp125 ppp250
#> 50    50    0.2   7.4  55.9  88.4       2    5.2   85.6

  # Given a specific PPI score (from 0 - 100), get a poverty probability
  # based on a specific poverty definition. In this example, the national
  # poverty line definition
  ppiScore <- 50
  ppiMMR2012[ppiMMR2012$score == ppiScore, "nl100"]
#> [1] 7.4