Skip to contents

Poverty Probability Index (PPI) lookup table for Mali

Usage

ppiMLI2010

Format

A data frame with 6 columns and 101 rows:

score

PPI score

nl100

National poverty line (100%)

nlFood

Food poverty line

extreme

USAID extreme poverty

ppp125

Below $1.25 per day purchasing power parity (2005)

ppp250

Below $2.50 per day purchasing power parity (2005)

Examples

  # Access Mali PPI table
  ppiMLI2010
#>      score nl100 nlFood extreme ppp125 ppp250
#> 1        0 100.0   72.8    49.2   72.8  100.0
#> 2        1 100.0   72.8    49.2   72.8  100.0
#> 3        2 100.0   72.8    49.2   72.8  100.0
#> 4        3 100.0   72.8    49.2   72.8  100.0
#> 5        4 100.0   72.8    49.2   72.8  100.0
#> 6        5  86.9   86.9    79.1   86.9  100.0
#> 7        6  86.9   86.9    79.1   86.9  100.0
#> 8        7  86.9   86.9    79.1   86.9  100.0
#> 9        8  86.9   86.9    79.1   86.9  100.0
#> 10       9  86.9   86.9    79.1   86.9  100.0
#> 11      10  98.4   81.0    78.4   84.7  100.0
#> 12      11  98.4   81.0    78.4   84.7  100.0
#> 13      12  98.4   81.0    78.4   84.7  100.0
#> 14      13  98.4   81.0    78.4   84.7  100.0
#> 15      14  98.4   81.0    78.4   84.7  100.0
#> 16      15  94.2   76.8    86.6   83.4  100.0
#> 17      16  94.2   76.8    86.6   83.4  100.0
#> 18      17  94.2   76.8    86.6   83.4  100.0
#> 19      18  94.2   76.8    86.6   83.4  100.0
#> 20      19  94.2   76.8    86.6   83.4  100.0
#> 21      20  94.1   77.8    72.0   87.8   99.6
#> 22      21  94.1   77.8    72.0   87.8   99.6
#> 23      22  94.1   77.8    72.0   87.8   99.6
#> 24      23  94.1   77.8    72.0   87.8   99.6
#> 25      24  94.1   77.8    72.0   87.8   99.6
#> 26      25  89.4   71.7    72.1   81.9   97.9
#> 27      26  89.4   71.7    72.1   81.9   97.9
#> 28      27  89.4   71.7    72.1   81.9   97.9
#> 29      28  89.4   71.7    72.1   81.9   97.9
#> 30      29  89.4   71.7    72.1   81.9   97.9
#> 31      30  86.3   75.0    71.1   82.6   98.5
#> 32      31  86.3   75.0    71.1   82.6   98.5
#> 33      32  86.3   75.0    71.1   82.6   98.5
#> 34      33  86.3   75.0    71.1   82.6   98.5
#> 35      34  86.3   75.0    71.1   82.6   98.5
#> 36      35  76.4   45.1    54.8   64.3   90.6
#> 37      36  76.4   45.1    54.8   64.3   90.6
#> 38      37  76.4   45.1    54.8   64.3   90.6
#> 39      38  76.4   45.1    54.8   64.3   90.6
#> 40      39  76.4   45.1    54.8   64.3   90.6
#> 41      40  81.5   45.8    44.6   67.5   95.9
#> 42      41  81.5   45.8    44.6   67.5   95.9
#> 43      42  81.5   45.8    44.6   67.5   95.9
#> 44      43  81.5   45.8    44.6   67.5   95.9
#> 45      44  81.5   45.8    44.6   67.5   95.9
#> 46      45  63.9   36.0    30.6   49.5   91.5
#> 47      46  63.9   36.0    30.6   49.5   91.5
#> 48      47  63.9   36.0    30.6   49.5   91.5
#> 49      48  63.9   36.0    30.6   49.5   91.5
#> 50      49  63.9   36.0    30.6   49.5   91.5
#> 51      50  47.4   19.0    26.4   32.0   88.7
#> 52      51  47.4   19.0    26.4   32.0   88.7
#> 53      52  47.4   19.0    26.4   32.0   88.7
#> 54      53  47.4   19.0    26.4   32.0   88.7
#> 55      54  47.4   19.0    26.4   32.0   88.7
#> 56      55  24.9    8.5    12.2   13.8   67.4
#> 57      56  24.9    8.5    12.2   13.8   67.4
#> 58      57  24.9    8.5    12.2   13.8   67.4
#> 59      58  24.9    8.5    12.2   13.8   67.4
#> 60      59  24.9    8.5    12.2   13.8   67.4
#> 61      60  21.3    5.0     7.9    7.5   55.1
#> 62      61  21.3    5.0     7.9    7.5   55.1
#> 63      62  21.3    5.0     7.9    7.5   55.1
#> 64      63  21.3    5.0     7.9    7.5   55.1
#> 65      64  21.3    5.0     7.9    7.5   55.1
#> 66      65   7.2    0.9     2.7    3.9   58.8
#> 67      66   7.2    0.9     2.7    3.9   58.8
#> 68      67   7.2    0.9     2.7    3.9   58.8
#> 69      68   7.2    0.9     2.7    3.9   58.8
#> 70      69   7.2    0.9     2.7    3.9   58.8
#> 71      70   5.6    0.4     0.4    0.4   42.0
#> 72      71   5.6    0.4     0.4    0.4   42.0
#> 73      72   5.6    0.4     0.4    0.4   42.0
#> 74      73   5.6    0.4     0.4    0.4   42.0
#> 75      74   5.6    0.4     0.4    0.4   42.0
#> 76      75   6.7    0.0     3.1    0.6   26.4
#> 77      76   6.7    0.0     3.1    0.6   26.4
#> 78      77   6.7    0.0     3.1    0.6   26.4
#> 79      78   6.7    0.0     3.1    0.6   26.4
#> 80      79   6.7    0.0     3.1    0.6   26.4
#> 81      80   0.8    0.8     0.6    0.8   38.2
#> 82      81   0.8    0.8     0.6    0.8   38.2
#> 83      82   0.8    0.8     0.6    0.8   38.2
#> 84      83   0.8    0.8     0.6    0.8   38.2
#> 85      84   0.8    0.8     0.6    0.8   38.2
#> 86      85   0.0    0.0     0.0    0.0   39.0
#> 87      86   0.0    0.0     0.0    0.0   39.0
#> 88      87   0.0    0.0     0.0    0.0   39.0
#> 89      88   0.0    0.0     0.0    0.0   39.0
#> 90      89   0.0    0.0     0.0    0.0   39.0
#> 91      90   5.9    0.0     0.0    0.0   10.0
#> 92      91   5.9    0.0     0.0    0.0   10.0
#> 93      92   5.9    0.0     0.0    0.0   10.0
#> 94      93   5.9    0.0     0.0    0.0   10.0
#> 95      94   5.9    0.0     0.0    0.0   10.0
#> 96      95   0.0    0.0     0.0    0.0    0.0
#> 97      96   0.0    0.0     0.0    0.0    0.0
#> 98      97   0.0    0.0     0.0    0.0    0.0
#> 99      98   0.0    0.0     0.0    0.0    0.0
#> 100     99   0.0    0.0     0.0    0.0    0.0
#> 1001   100   0.0    0.0     0.0    0.0    0.0

  # Given a specific PPI score (from 0 - 100), get the row of poverty
  # probabilities from PPI table it corresponds to
  ppiScore <- 50
  ppiMLI2010[ppiMLI2010$score == ppiScore, ]
#>    score nl100 nlFood extreme ppp125 ppp250
#> 51    50  47.4     19    26.4     32   88.7

  # Use subset() function to get the row of poverty probabilities corresponding
  # to specific PPI score
  ppiScore <- 50
  subset(ppiMLI2010, score == ppiScore)
#>    score nl100 nlFood extreme ppp125 ppp250
#> 51    50  47.4     19    26.4     32   88.7

  # Given a specific PPI score (from 0 - 100), get a poverty probability
  # based on a specific poverty definition. In this example, the national
  # poverty line definition
  ppiScore <- 50
  ppiMLI2010[ppiMLI2010$score == ppiScore, "nl100"]
#> [1] 47.4