Skip to contents

Poverty Probability Index (PPI) lookup table for Mexico using legacy definitions

Usage

ppiMEX2017

Format

A data frame with 8 columns and 101 rows:

score

PPI score

nlFood

Food poverty line

nlCapability

Capabilities

nl100

National poverty line (100%)

nl125

National poverty line (125%)

nl150

National poverty line (150%)

ppp125

Below $1.25 per day purchasing power parity (2005)

ppp250

Below $2.50 per day purchasing power parity (2005)

Examples

  # Access Mexico PPI table
  ppiMEX2017
#>     score nlFood nlCapability nl100 nl125 nl150 ppp125 ppp250
#> 0       0   84.5         92.7  98.6 100.0 100.0   25.2   69.5
#> 1       1   84.5         92.7  98.6 100.0 100.0   25.2   69.5
#> 2       2   84.5         92.7  98.6 100.0 100.0   25.2   69.5
#> 3       3   84.5         92.7  98.6 100.0 100.0   25.2   69.5
#> 4       4   84.5         92.7  98.6 100.0 100.0   25.2   69.5
#> 5       5   77.0         86.2  97.4 100.0 100.0   14.8   55.3
#> 6       6   77.0         86.2  97.4 100.0 100.0   14.8   55.3
#> 7       7   77.0         86.2  97.4 100.0 100.0   14.8   55.3
#> 8       8   77.0         86.2  97.4 100.0 100.0   14.8   55.3
#> 9       9   77.0         86.2  97.4 100.0 100.0   14.8   55.3
#> 10     10   66.6         75.1  96.5  99.5  99.8    7.4   45.8
#> 11     11   66.6         75.1  96.5  99.5  99.8    7.4   45.8
#> 12     12   66.6         75.1  96.5  99.5  99.8    7.4   45.8
#> 13     13   66.6         75.1  96.5  99.5  99.8    7.4   45.8
#> 14     14   66.6         75.1  96.5  99.5  99.8    7.4   45.8
#> 15     15   58.1         70.5  92.0  98.0  99.5    4.9   36.3
#> 16     16   58.1         70.5  92.0  98.0  99.5    4.9   36.3
#> 17     17   58.1         70.5  92.0  98.0  99.5    4.9   36.3
#> 18     18   58.1         70.5  92.0  98.0  99.5    4.9   36.3
#> 19     19   58.1         70.5  92.0  98.0  99.5    4.9   36.3
#> 20     20   45.9         58.3  89.7  96.0  98.0    2.6   24.6
#> 21     21   45.9         58.3  89.7  96.0  98.0    2.6   24.6
#> 22     22   45.9         58.3  89.7  96.0  98.0    2.6   24.6
#> 23     23   45.9         58.3  89.7  96.0  98.0    2.6   24.6
#> 24     24   45.9         58.3  89.7  96.0  98.0    2.6   24.6
#> 25     25   35.7         49.9  84.7  93.1  95.4    2.2   15.9
#> 26     26   35.7         49.9  84.7  93.1  95.4    2.2   15.9
#> 27     27   35.7         49.9  84.7  93.1  95.4    2.2   15.9
#> 28     28   35.7         49.9  84.7  93.1  95.4    2.2   15.9
#> 29     29   35.7         49.9  84.7  93.1  95.4    2.2   15.9
#> 30     30   28.6         41.7  76.2  89.0  94.4    2.2   12.8
#> 31     31   28.6         41.7  76.2  89.0  94.4    2.2   12.8
#> 32     32   28.6         41.7  76.2  89.0  94.4    2.2   12.8
#> 33     33   28.6         41.7  76.2  89.0  94.4    2.2   12.8
#> 34     34   28.6         41.7  76.2  89.0  94.4    2.2   12.8
#> 35     35   21.6         34.1  71.3  83.4  91.3    0.9    9.1
#> 36     36   21.6         34.1  71.3  83.4  91.3    0.9    9.1
#> 37     37   21.6         34.1  71.3  83.4  91.3    0.9    9.1
#> 38     38   21.6         34.1  71.3  83.4  91.3    0.9    9.1
#> 39     39   21.6         34.1  71.3  83.4  91.3    0.9    9.1
#> 40     40   13.1         27.6  59.8  75.9  85.1    0.8    5.7
#> 41     41   13.1         27.6  59.8  75.9  85.1    0.8    5.7
#> 42     42   13.1         27.6  59.8  75.9  85.1    0.8    5.7
#> 43     43   13.1         27.6  59.8  75.9  85.1    0.8    5.7
#> 44     44   13.1         27.6  59.8  75.9  85.1    0.8    5.7
#> 45     45   10.2         18.7  49.6  68.7  79.0    0.6    3.7
#> 46     46   10.2         18.7  49.6  68.7  79.0    0.6    3.7
#> 47     47   10.2         18.7  49.6  68.7  79.0    0.6    3.7
#> 48     48   10.2         18.7  49.6  68.7  79.0    0.6    3.7
#> 49     49   10.2         18.7  49.6  68.7  79.0    0.6    3.7
#> 50     50    8.5         14.5  42.2  61.3  72.9    0.6    3.2
#> 51     51    8.5         14.5  42.2  61.3  72.9    0.6    3.2
#> 52     52    8.5         14.5  42.2  61.3  72.9    0.6    3.2
#> 53     53    8.5         14.5  42.2  61.3  72.9    0.6    3.2
#> 54     54    8.5         14.5  42.2  61.3  72.9    0.6    3.2
#> 55     55    5.8         10.0  30.4  47.2  63.8    0.4    2.5
#> 56     56    5.8         10.0  30.4  47.2  63.8    0.4    2.5
#> 57     57    5.8         10.0  30.4  47.2  63.8    0.4    2.5
#> 58     58    5.8         10.0  30.4  47.2  63.8    0.4    2.5
#> 59     59    5.8         10.0  30.4  47.2  63.8    0.4    2.5
#> 60     60    3.1          6.4  25.1  37.7  51.2    0.1    1.2
#> 61     61    3.1          6.4  25.1  37.7  51.2    0.1    1.2
#> 62     62    3.1          6.4  25.1  37.7  51.2    0.1    1.2
#> 63     63    3.1          6.4  25.1  37.7  51.2    0.1    1.2
#> 64     64    3.1          6.4  25.1  37.7  51.2    0.1    1.2
#> 65     65    2.3          4.3  20.6  31.0  42.6    0.1    0.5
#> 66     66    2.3          4.3  20.6  31.0  42.6    0.1    0.5
#> 67     67    2.3          4.3  20.6  31.0  42.6    0.1    0.5
#> 68     68    2.3          4.3  20.6  31.0  42.6    0.1    0.5
#> 69     69    2.3          4.3  20.6  31.0  42.6    0.1    0.5
#> 70     70    1.0          2.4  10.5  18.9  31.1    0.1    0.4
#> 71     71    1.0          2.4  10.5  18.9  31.1    0.1    0.4
#> 72     72    1.0          2.4  10.5  18.9  31.1    0.1    0.4
#> 73     73    1.0          2.4  10.5  18.9  31.1    0.1    0.4
#> 74     74    1.0          2.4  10.5  18.9  31.1    0.1    0.4
#> 75     75    0.9          1.6   7.0  14.0  23.4    0.1    0.4
#> 76     76    0.9          1.6   7.0  14.0  23.4    0.1    0.4
#> 77     77    0.9          1.6   7.0  14.0  23.4    0.1    0.4
#> 78     78    0.9          1.6   7.0  14.0  23.4    0.1    0.4
#> 79     79    0.9          1.6   7.0  14.0  23.4    0.1    0.4
#> 80     80    0.4          1.0   5.5  11.3  17.9    0.0    0.3
#> 81     81    0.4          1.0   5.5  11.3  17.9    0.0    0.3
#> 82     82    0.4          1.0   5.5  11.3  17.9    0.0    0.3
#> 83     83    0.4          1.0   5.5  11.3  17.9    0.0    0.3
#> 84     84    0.4          1.0   5.5  11.3  17.9    0.0    0.3
#> 85     85    0.4          0.9   4.9   8.3  12.3    0.0    0.3
#> 86     86    0.4          0.9   4.9   8.3  12.3    0.0    0.3
#> 87     87    0.4          0.9   4.9   8.3  12.3    0.0    0.3
#> 88     88    0.4          0.9   4.9   8.3  12.3    0.0    0.3
#> 89     89    0.4          0.9   4.9   8.3  12.3    0.0    0.3
#> 90     90    0.3          0.7   2.9   5.3   8.9    0.0    0.2
#> 91     91    0.3          0.7   2.9   5.3   8.9    0.0    0.2
#> 92     92    0.3          0.7   2.9   5.3   8.9    0.0    0.2
#> 93     93    0.3          0.7   2.9   5.3   8.9    0.0    0.2
#> 94     94    0.3          0.7   2.9   5.3   8.9    0.0    0.2
#> 95     95    0.0          0.0   1.4   1.7   4.1    0.0    0.0
#> 96     96    0.0          0.0   1.4   1.7   4.1    0.0    0.0
#> 97     97    0.0          0.0   1.4   1.7   4.1    0.0    0.0
#> 98     98    0.0          0.0   1.4   1.7   4.1    0.0    0.0
#> 99     99    0.0          0.0   1.4   1.7   4.1    0.0    0.0
#> 100   100    0.0          0.0   1.4   1.7   4.1    0.0    0.0

  # Given a specific PPI score (from 0 - 100), get the row of poverty
  # probabilities from PPI table it corresponds to
  ppiScore <- 50
  ppiMEX2017[ppiMEX2017$score == ppiScore, ]
#>    score nlFood nlCapability nl100 nl125 nl150 ppp125 ppp250
#> 50    50    8.5         14.5  42.2  61.3  72.9    0.6    3.2

  # Use subset() function to get the row of poverty probabilities corresponding
  # to specific PPI score
  ppiScore <- 50
  subset(ppiMEX2017, score == ppiScore)
#>    score nlFood nlCapability nl100 nl125 nl150 ppp125 ppp250
#> 50    50    8.5         14.5  42.2  61.3  72.9    0.6    3.2

  # Given a specific PPI score (from 0 - 100), get a poverty probability
  # based on a specific poverty definition. In this example, the national
  # poverty line definition
  ppiScore <- 50
  ppiMEX2017[ppiMEX2017$score == ppiScore, "nl100"]
#> [1] 42.2