Skip to contents

Poverty Probability Index (PPI) lookup table for Morocco

Usage

ppiMAR2013

Format

A data frame with 9 columns and 101 rows:

score

PPI score

nl100

National poverty line (100%)

nl150

National poverty line (150%)

nl200

National poverty line (200%)

extreme

USAID extreme poverty

ppp125

Below $1.25 per day purchasing power parity (2005)

ppp250

Below $2.50 per day purchasing power parity (2005)

ppp375

Below $3.75 per day purchasing power parity (2005)

ppp500

Below $5.00 per day purchasing power parity (2005)

Examples

  # Access Morocco PPI table
  ppiMAR2013
#>     score nl100 nl150 nl200 extreme ppp125 ppp250 ppp375 ppp500
#> 0       0 100.0 100.0 100.0   100.0  100.0  100.0  100.0  100.0
#> 1       1 100.0 100.0 100.0   100.0  100.0  100.0  100.0  100.0
#> 2       2 100.0 100.0 100.0   100.0  100.0  100.0  100.0  100.0
#> 3       3 100.0 100.0 100.0   100.0  100.0  100.0  100.0  100.0
#> 4       4 100.0 100.0 100.0   100.0  100.0  100.0  100.0  100.0
#> 5       5  72.4  93.7 100.0    51.8   38.7   93.0  100.0  100.0
#> 6       6  72.4  93.7 100.0    51.8   38.7   93.0  100.0  100.0
#> 7       7  72.4  93.7 100.0    51.8   38.7   93.0  100.0  100.0
#> 8       8  72.4  93.7 100.0    51.8   38.7   93.0  100.0  100.0
#> 9       9  72.4  93.7 100.0    51.8   38.7   93.0  100.0  100.0
#> 10     10  43.8  87.3  95.9    28.0   17.9   77.7   96.5   99.5
#> 11     11  43.8  87.3  95.9    28.0   17.9   77.7   96.5   99.5
#> 12     12  43.8  87.3  95.9    28.0   17.9   77.7   96.5   99.5
#> 13     13  43.8  87.3  95.9    28.0   17.9   77.7   96.5   99.5
#> 14     14  43.8  87.3  95.9    28.0   17.9   77.7   96.5   99.5
#> 15     15  36.9  77.3  92.7    22.5   13.1   72.9   93.6   98.4
#> 16     16  36.9  77.3  92.7    22.5   13.1   72.9   93.6   98.4
#> 17     17  36.9  77.3  92.7    22.5   13.1   72.9   93.6   98.4
#> 18     18  36.9  77.3  92.7    22.5   13.1   72.9   93.6   98.4
#> 19     19  36.9  77.3  92.7    22.5   13.1   72.9   93.6   98.4
#> 20     20  26.6  62.9  83.8    14.5    7.8   58.2   87.9   96.3
#> 21     21  26.6  62.9  83.8    14.5    7.8   58.2   87.9   96.3
#> 22     22  26.6  62.9  83.8    14.5    7.8   58.2   87.9   96.3
#> 23     23  26.6  62.9  83.8    14.5    7.8   58.2   87.9   96.3
#> 24     24  26.6  62.9  83.8    14.5    7.8   58.2   87.9   96.3
#> 25     25  14.5  46.3  76.9     6.9    3.6   42.0   81.6   94.1
#> 26     26  14.5  46.3  76.9     6.9    3.6   42.0   81.6   94.1
#> 27     27  14.5  46.3  76.9     6.9    3.6   42.0   81.6   94.1
#> 28     28  14.5  46.3  76.9     6.9    3.6   42.0   81.6   94.1
#> 29     29  14.5  46.3  76.9     6.9    3.6   42.0   81.6   94.1
#> 30     30   8.6  38.3  63.9     2.5    1.5   32.8   69.3   87.6
#> 31     31   8.6  38.3  63.9     2.5    1.5   32.8   69.3   87.6
#> 32     32   8.6  38.3  63.9     2.5    1.5   32.8   69.3   87.6
#> 33     33   8.6  38.3  63.9     2.5    1.5   32.8   69.3   87.6
#> 34     34   8.6  38.3  63.9     2.5    1.5   32.8   69.3   87.6
#> 35     35   3.8  19.5  45.0     1.5    0.5   16.1   51.4   77.8
#> 36     36   3.8  19.5  45.0     1.5    0.5   16.1   51.4   77.8
#> 37     37   3.8  19.5  45.0     1.5    0.5   16.1   51.4   77.8
#> 38     38   3.8  19.5  45.0     1.5    0.5   16.1   51.4   77.8
#> 39     39   3.8  19.5  45.0     1.5    0.5   16.1   51.4   77.8
#> 40     40   1.9  13.7  32.7     0.6    0.1   11.1   37.3   65.7
#> 41     41   1.9  13.7  32.7     0.6    0.1   11.1   37.3   65.7
#> 42     42   1.9  13.7  32.7     0.6    0.1   11.1   37.3   65.7
#> 43     43   1.9  13.7  32.7     0.6    0.1   11.1   37.3   65.7
#> 44     44   1.9  13.7  32.7     0.6    0.1   11.1   37.3   65.7
#> 45     45   0.5   8.7  26.3     0.0    0.0    5.7   29.9   57.7
#> 46     46   0.5   8.7  26.3     0.0    0.0    5.7   29.9   57.7
#> 47     47   0.5   8.7  26.3     0.0    0.0    5.7   29.9   57.7
#> 48     48   0.5   8.7  26.3     0.0    0.0    5.7   29.9   57.7
#> 49     49   0.5   8.7  26.3     0.0    0.0    5.7   29.9   57.7
#> 50     50   0.0   3.4  15.5     0.0    0.0    1.9   20.3   42.6
#> 51     51   0.0   3.4  15.5     0.0    0.0    1.9   20.3   42.6
#> 52     52   0.0   3.4  15.5     0.0    0.0    1.9   20.3   42.6
#> 53     53   0.0   3.4  15.5     0.0    0.0    1.9   20.3   42.6
#> 54     54   0.0   3.4  15.5     0.0    0.0    1.9   20.3   42.6
#> 55     55   0.0   2.0   9.9     0.0    0.0    1.1   12.9   30.3
#> 56     56   0.0   2.0   9.9     0.0    0.0    1.1   12.9   30.3
#> 57     57   0.0   2.0   9.9     0.0    0.0    1.1   12.9   30.3
#> 58     58   0.0   2.0   9.9     0.0    0.0    1.1   12.9   30.3
#> 59     59   0.0   2.0   9.9     0.0    0.0    1.1   12.9   30.3
#> 60     60   0.0   1.2   5.8     0.0    0.0    0.6    8.4   23.8
#> 61     61   0.0   1.2   5.8     0.0    0.0    0.6    8.4   23.8
#> 62     62   0.0   1.2   5.8     0.0    0.0    0.6    8.4   23.8
#> 63     63   0.0   1.2   5.8     0.0    0.0    0.6    8.4   23.8
#> 64     64   0.0   1.2   5.8     0.0    0.0    0.6    8.4   23.8
#> 65     65   0.0   0.0   2.1     0.0    0.0    0.0    2.6   13.2
#> 66     66   0.0   0.0   2.1     0.0    0.0    0.0    2.6   13.2
#> 67     67   0.0   0.0   2.1     0.0    0.0    0.0    2.6   13.2
#> 68     68   0.0   0.0   2.1     0.0    0.0    0.0    2.6   13.2
#> 69     69   0.0   0.0   2.1     0.0    0.0    0.0    2.6   13.2
#> 70     70   0.0   0.0   0.9     0.0    0.0    0.0    0.9    6.8
#> 71     71   0.0   0.0   0.9     0.0    0.0    0.0    0.9    6.8
#> 72     72   0.0   0.0   0.9     0.0    0.0    0.0    0.9    6.8
#> 73     73   0.0   0.0   0.9     0.0    0.0    0.0    0.9    6.8
#> 74     74   0.0   0.0   0.9     0.0    0.0    0.0    0.9    6.8
#> 75     75   0.0   0.0   0.4     0.0    0.0    0.0    0.4    2.8
#> 76     76   0.0   0.0   0.4     0.0    0.0    0.0    0.4    2.8
#> 77     77   0.0   0.0   0.4     0.0    0.0    0.0    0.4    2.8
#> 78     78   0.0   0.0   0.4     0.0    0.0    0.0    0.4    2.8
#> 79     79   0.0   0.0   0.4     0.0    0.0    0.0    0.4    2.8
#> 80     80   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 81     81   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 82     82   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 83     83   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 84     84   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 85     85   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 86     86   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 87     87   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 88     88   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 89     89   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 90     90   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 91     91   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 92     92   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 93     93   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 94     94   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 95     95   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 96     96   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 97     97   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 98     98   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 99     99   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 100   100   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0

  # Given a specific PPI score (from 0 - 100), get the row of poverty
  # probabilities from PPI table it corresponds to
  ppiScore <- 50
  ppiMAR2013[ppiMAR2013$score == ppiScore, ]
#>    score nl100 nl150 nl200 extreme ppp125 ppp250 ppp375 ppp500
#> 50    50     0   3.4  15.5       0      0    1.9   20.3   42.6

  # Use subset() function to get the row of poverty probabilities corresponding
  # to specific PPI score
  ppiScore <- 50
  subset(ppiMAR2013, score == ppiScore)
#>    score nl100 nl150 nl200 extreme ppp125 ppp250 ppp375 ppp500
#> 50    50     0   3.4  15.5       0      0    1.9   20.3   42.6

  # Given a specific PPI score (from 0 - 100), get a poverty probability
  # based on a specific poverty definition. In this example, the national
  # poverty line definition
  ppiScore <- 50
  ppiMAR2013[ppiMAR2013$score == ppiScore, "nl100"]
#> [1] 0