Skip to contents

Poverty Probability Index (PPI) lookup table for Cambodia

Usage

ppiKHM2015_wb

Format

A data frame with 9 columns and 101 rows:

score

PPI score

nl100

National poverty line (100%)

nl150

National poverty line (150%)

nl200

National poverty line (200%)

median

Median poverty line

ppp125

Below $1.25 per day purchasing power parity (2005)

ppp200

Below $2.00 per day purchasing power parity (2005)

ppp250

Below $2.50 per day purchasing power parity (2005)

ppp500

Below $5.00 per day purchasing power parity (2005)

Examples

  # Access Cambodia PPI table
  ppiKHM2015_wb
#>     score nl100 nl150 nl200 median ppp125 ppp200 ppp250 ppp500
#> 0       0 100.0 100.0 100.0   96.0   42.0  100.0  100.0  100.0
#> 1       1 100.0 100.0 100.0   96.0   42.0  100.0  100.0  100.0
#> 2       2 100.0 100.0 100.0   96.0   42.0  100.0  100.0  100.0
#> 3       3 100.0 100.0 100.0   96.0   42.0  100.0  100.0  100.0
#> 4       4 100.0 100.0 100.0   96.0   42.0  100.0  100.0  100.0
#> 5       5  94.9 100.0 100.0   84.9   42.0   95.6   95.9  100.0
#> 6       6  94.9 100.0 100.0   84.9   42.0   95.6   95.9  100.0
#> 7       7  94.9 100.0 100.0   84.9   42.0   95.6   95.9  100.0
#> 8       8  94.9 100.0 100.0   84.9   42.0   95.6   95.9  100.0
#> 9       9  94.9 100.0 100.0   84.9   42.0   95.6   95.9  100.0
#> 10     10  88.6 100.0 100.0   71.8   17.4   91.5   92.1  100.0
#> 11     11  88.6 100.0 100.0   71.8   17.4   91.5   92.1  100.0
#> 12     12  88.6 100.0 100.0   71.8   17.4   91.5   92.1  100.0
#> 13     13  88.6 100.0 100.0   71.8   17.4   91.5   92.1  100.0
#> 14     14  88.6 100.0 100.0   71.8   17.4   91.5   92.1  100.0
#> 15     15  73.8  97.1 100.0   41.4   10.1   77.5   92.1  100.0
#> 16     16  73.8  97.1 100.0   41.4   10.1   77.5   92.1  100.0
#> 17     17  73.8  97.1 100.0   41.4   10.1   77.5   92.1  100.0
#> 18     18  73.8  97.1 100.0   41.4   10.1   77.5   92.1  100.0
#> 19     19  73.8  97.1 100.0   41.4   10.1   77.5   92.1  100.0
#> 20     20  60.7  96.4 100.0   31.7    9.3   62.0   91.9  100.0
#> 21     21  60.7  96.4 100.0   31.7    9.3   62.0   91.9  100.0
#> 22     22  60.7  96.4 100.0   31.7    9.3   62.0   91.9  100.0
#> 23     23  60.7  96.4 100.0   31.7    9.3   62.0   91.9  100.0
#> 24     24  60.7  96.4 100.0   31.7    9.3   62.0   91.9  100.0
#> 25     25  46.6  93.3  97.5   23.3    7.5   52.5   79.4   99.5
#> 26     26  46.6  93.3  97.5   23.3    7.5   52.5   79.4   99.5
#> 27     27  46.6  93.3  97.5   23.3    7.5   52.5   79.4   99.5
#> 28     28  46.6  93.3  97.5   23.3    7.5   52.5   79.4   99.5
#> 29     29  46.6  93.3  97.5   23.3    7.5   52.5   79.4   99.5
#> 30     30  34.3  86.6  97.5   15.3    4.1   39.4   73.7   99.5
#> 31     31  34.3  86.6  97.5   15.3    4.1   39.4   73.7   99.5
#> 32     32  34.3  86.6  97.5   15.3    4.1   39.4   73.7   99.5
#> 33     33  34.3  86.6  97.5   15.3    4.1   39.4   73.7   99.5
#> 34     34  34.3  86.6  97.5   15.3    4.1   39.4   73.7   99.5
#> 35     35  20.2  74.6  96.5    6.0    0.4   24.6   55.0   99.5
#> 36     36  20.2  74.6  96.5    6.0    0.4   24.6   55.0   99.5
#> 37     37  20.2  74.6  96.5    6.0    0.4   24.6   55.0   99.5
#> 38     38  20.2  74.6  96.5    6.0    0.4   24.6   55.0   99.5
#> 39     39  20.2  74.6  96.5    6.0    0.4   24.6   55.0   99.5
#> 40     40  10.5  62.4  90.0    2.9    0.2   14.8   43.1   98.6
#> 41     41  10.5  62.4  90.0    2.9    0.2   14.8   43.1   98.6
#> 42     42  10.5  62.4  90.0    2.9    0.2   14.8   43.1   98.6
#> 43     43  10.5  62.4  90.0    2.9    0.2   14.8   43.1   98.6
#> 44     44  10.5  62.4  90.0    2.9    0.2   14.8   43.1   98.6
#> 45     45   5.5  42.5  76.8    0.8    0.1    8.4   25.2   93.1
#> 46     46   5.5  42.5  76.8    0.8    0.1    8.4   25.2   93.1
#> 47     47   5.5  42.5  76.8    0.8    0.1    8.4   25.2   93.1
#> 48     48   5.5  42.5  76.8    0.8    0.1    8.4   25.2   93.1
#> 49     49   5.5  42.5  76.8    0.8    0.1    8.4   25.2   93.1
#> 50     50   0.7  31.4  70.2    0.0    0.0    1.9   15.9   89.2
#> 51     51   0.7  31.4  70.2    0.0    0.0    1.9   15.9   89.2
#> 52     52   0.7  31.4  70.2    0.0    0.0    1.9   15.9   89.2
#> 53     53   0.7  31.4  70.2    0.0    0.0    1.9   15.9   89.2
#> 54     54   0.7  31.4  70.2    0.0    0.0    1.9   15.9   89.2
#> 55     55   0.2  15.1  45.4    0.0    0.0    1.0    5.3   72.2
#> 56     56   0.2  15.1  45.4    0.0    0.0    1.0    5.3   72.2
#> 57     57   0.2  15.1  45.4    0.0    0.0    1.0    5.3   72.2
#> 58     58   0.2  15.1  45.4    0.0    0.0    1.0    5.3   72.2
#> 59     59   0.2  15.1  45.4    0.0    0.0    1.0    5.3   72.2
#> 60     60   0.2   9.0  38.7    0.0    0.0    0.5    1.0   67.3
#> 61     61   0.2   9.0  38.7    0.0    0.0    0.5    1.0   67.3
#> 62     62   0.2   9.0  38.7    0.0    0.0    0.5    1.0   67.3
#> 63     63   0.2   9.0  38.7    0.0    0.0    0.5    1.0   67.3
#> 64     64   0.2   9.0  38.7    0.0    0.0    0.5    1.0   67.3
#> 65     65   0.0   2.1  14.7    0.0    0.0    0.0    0.6   49.8
#> 66     66   0.0   2.1  14.7    0.0    0.0    0.0    0.6   49.8
#> 67     67   0.0   2.1  14.7    0.0    0.0    0.0    0.6   49.8
#> 68     68   0.0   2.1  14.7    0.0    0.0    0.0    0.6   49.8
#> 69     69   0.0   2.1  14.7    0.0    0.0    0.0    0.6   49.8
#> 70     70   0.0   0.0   6.8    0.0    0.0    0.0    0.0   25.7
#> 71     71   0.0   0.0   6.8    0.0    0.0    0.0    0.0   25.7
#> 72     72   0.0   0.0   6.8    0.0    0.0    0.0    0.0   25.7
#> 73     73   0.0   0.0   6.8    0.0    0.0    0.0    0.0   25.7
#> 74     74   0.0   0.0   6.8    0.0    0.0    0.0    0.0   25.7
#> 75     75   0.0   0.0   5.6    0.0    0.0    0.0    0.0   19.6
#> 76     76   0.0   0.0   5.6    0.0    0.0    0.0    0.0   19.6
#> 77     77   0.0   0.0   5.6    0.0    0.0    0.0    0.0   19.6
#> 78     78   0.0   0.0   5.6    0.0    0.0    0.0    0.0   19.6
#> 79     79   0.0   0.0   5.6    0.0    0.0    0.0    0.0   19.6
#> 80     80   0.0   0.0   1.6    0.0    0.0    0.0    0.0   15.3
#> 81     81   0.0   0.0   1.6    0.0    0.0    0.0    0.0   15.3
#> 82     82   0.0   0.0   1.6    0.0    0.0    0.0    0.0   15.3
#> 83     83   0.0   0.0   1.6    0.0    0.0    0.0    0.0   15.3
#> 84     84   0.0   0.0   1.6    0.0    0.0    0.0    0.0   15.3
#> 85     85   0.0   0.0   0.0    0.0    0.0    0.0    0.0    0.0
#> 86     86   0.0   0.0   0.0    0.0    0.0    0.0    0.0    0.0
#> 87     87   0.0   0.0   0.0    0.0    0.0    0.0    0.0    0.0
#> 88     88   0.0   0.0   0.0    0.0    0.0    0.0    0.0    0.0
#> 89     89   0.0   0.0   0.0    0.0    0.0    0.0    0.0    0.0
#> 90     90   0.0   0.0   0.0    0.0    0.0    0.0    0.0    0.0
#> 91     91   0.0   0.0   0.0    0.0    0.0    0.0    0.0    0.0
#> 92     92   0.0   0.0   0.0    0.0    0.0    0.0    0.0    0.0
#> 93     93   0.0   0.0   0.0    0.0    0.0    0.0    0.0    0.0
#> 94     94   0.0   0.0   0.0    0.0    0.0    0.0    0.0    0.0
#> 95     95   0.0   0.0   0.0    0.0    0.0    0.0    0.0    0.0
#> 96     96   0.0   0.0   0.0    0.0    0.0    0.0    0.0    0.0
#> 97     97   0.0   0.0   0.0    0.0    0.0    0.0    0.0    0.0
#> 98     98   0.0   0.0   0.0    0.0    0.0    0.0    0.0    0.0
#> 99     99   0.0   0.0   0.0    0.0    0.0    0.0    0.0    0.0
#> 100   100   0.0   0.0   0.0    0.0    0.0    0.0    0.0    0.0

  # Given a specific PPI score (from 0 - 100), get the row of poverty
  # probabilities from PPI table it corresponds to
  ppiScore <- 50
  ppiKHM2015_wb[ppiKHM2015_wb$score == ppiScore, ]
#>    score nl100 nl150 nl200 median ppp125 ppp200 ppp250 ppp500
#> 50    50   0.7  31.4  70.2      0      0    1.9   15.9   89.2

  # Use subset() function to get the row of poverty probabilities corresponding
  # to specific PPI score
  ppiScore <- 50
  subset(ppiKHM2015_wb, score == ppiScore)
#>    score nl100 nl150 nl200 median ppp125 ppp200 ppp250 ppp500
#> 50    50   0.7  31.4  70.2      0      0    1.9   15.9   89.2

  # Given a specific PPI score (from 0 - 100), get a poverty probability
  # based on a specific poverty definition. In this example, the national
  # poverty line definition
  ppiScore <- 50
  ppiKHM2015_wb[ppiKHM2015_wb$score == ppiScore, "nl100"]
#> [1] 0.7