Skip to contents

Poverty Probability Index (PPI) lookup table for Cambodia

Usage

ppiKHM2015_gov

Format

A data frame with 9 columns and 101 rows:

score

PPI score

nl100

National poverty line (100%)

nl150

National poverty line (150%)

nl200

National poverty line (200%)

median

Median poverty line

ppp125

Below $1.25 per day purchasing power parity (2005)

ppp200

Below $2.00 per day purchasing power parity (2005)

ppp250

Below $2.50 per day purchasing power parity (2005)

ppp500

Below $5.00 per day purchasing power parity (2005)

Examples

  # Access Cambodia PPI table
  ppiKHM2015_gov
#>     score nl100 nl150 nl200 median ppp125 ppp200 ppp250 ppp500
#> 0       0 100.0 100.0 100.0   55.8   41.4  100.0  100.0  100.0
#> 1       1 100.0 100.0 100.0   55.8   41.4  100.0  100.0  100.0
#> 2       2 100.0 100.0 100.0   55.8   41.4  100.0  100.0  100.0
#> 3       3 100.0 100.0 100.0   55.8   41.4  100.0  100.0  100.0
#> 4       4 100.0 100.0 100.0   55.8   41.4  100.0  100.0  100.0
#> 5       5  91.9  97.8 100.0   55.8   41.4   91.9   95.4  100.0
#> 6       6  91.9  97.8 100.0   55.8   41.4   91.9   95.4  100.0
#> 7       7  91.9  97.8 100.0   55.8   41.4   91.9   95.4  100.0
#> 8       8  91.9  97.8 100.0   55.8   41.4   91.9   95.4  100.0
#> 9       9  91.9  97.8 100.0   55.8   41.4   91.9   95.4  100.0
#> 10     10  74.5  95.8 100.0   55.8   26.4   80.8   91.3  100.0
#> 11     11  74.5  95.8 100.0   55.8   26.4   80.8   91.3  100.0
#> 12     12  74.5  95.8 100.0   55.8   26.4   80.8   91.3  100.0
#> 13     13  74.5  95.8 100.0   55.8   26.4   80.8   91.3  100.0
#> 14     14  74.5  95.8 100.0   55.8   26.4   80.8   91.3  100.0
#> 15     15  59.8  95.8 100.0   31.7   11.8   64.3   88.0  100.0
#> 16     16  59.8  95.8 100.0   31.7   11.8   64.3   88.0  100.0
#> 17     17  59.8  95.8 100.0   31.7   11.8   64.3   88.0  100.0
#> 18     18  59.8  95.8 100.0   31.7   11.8   64.3   88.0  100.0
#> 19     19  59.8  95.8 100.0   31.7   11.8   64.3   88.0  100.0
#> 20     20  50.5  94.8 100.0   25.8   10.0   59.7   87.3  100.0
#> 21     21  50.5  94.8 100.0   25.8   10.0   59.7   87.3  100.0
#> 22     22  50.5  94.8 100.0   25.8   10.0   59.7   87.3  100.0
#> 23     23  50.5  94.8 100.0   25.8   10.0   59.7   87.3  100.0
#> 24     24  50.5  94.8 100.0   25.8   10.0   59.7   87.3  100.0
#> 25     25  41.4  87.3  96.0   23.1    9.6   54.9   80.3   99.7
#> 26     26  41.4  87.3  96.0   23.1    9.6   54.9   80.3   99.7
#> 27     27  41.4  87.3  96.0   23.1    9.6   54.9   80.3   99.7
#> 28     28  41.4  87.3  96.0   23.1    9.6   54.9   80.3   99.7
#> 29     29  41.4  87.3  96.0   23.1    9.6   54.9   80.3   99.7
#> 30     30  29.7  80.5  95.1   15.1    6.3   38.4   75.1   98.5
#> 31     31  29.7  80.5  95.1   15.1    6.3   38.4   75.1   98.5
#> 32     32  29.7  80.5  95.1   15.1    6.3   38.4   75.1   98.5
#> 33     33  29.7  80.5  95.1   15.1    6.3   38.4   75.1   98.5
#> 34     34  29.7  80.5  95.1   15.1    6.3   38.4   75.1   98.5
#> 35     35  21.0  66.4  92.3    8.0    1.0   27.3   58.3   97.6
#> 36     36  21.0  66.4  92.3    8.0    1.0   27.3   58.3   97.6
#> 37     37  21.0  66.4  92.3    8.0    1.0   27.3   58.3   97.6
#> 38     38  21.0  66.4  92.3    8.0    1.0   27.3   58.3   97.6
#> 39     39  21.0  66.4  92.3    8.0    1.0   27.3   58.3   97.6
#> 40     40   9.3  54.0  86.5    3.2    0.7   16.1   44.8   96.7
#> 41     41   9.3  54.0  86.5    3.2    0.7   16.1   44.8   96.7
#> 42     42   9.3  54.0  86.5    3.2    0.7   16.1   44.8   96.7
#> 43     43   9.3  54.0  86.5    3.2    0.7   16.1   44.8   96.7
#> 44     44   9.3  54.0  86.5    3.2    0.7   16.1   44.8   96.7
#> 45     45   7.9  41.6  75.0    2.3    0.3   10.9   31.1   93.5
#> 46     46   7.9  41.6  75.0    2.3    0.3   10.9   31.1   93.5
#> 47     47   7.9  41.6  75.0    2.3    0.3   10.9   31.1   93.5
#> 48     48   7.9  41.6  75.0    2.3    0.3   10.9   31.1   93.5
#> 49     49   7.9  41.6  75.0    2.3    0.3   10.9   31.1   93.5
#> 50     50   4.7  35.8  68.9    2.0    0.1    8.1   25.2   90.6
#> 51     51   4.7  35.8  68.9    2.0    0.1    8.1   25.2   90.6
#> 52     52   4.7  35.8  68.9    2.0    0.1    8.1   25.2   90.6
#> 53     53   4.7  35.8  68.9    2.0    0.1    8.1   25.2   90.6
#> 54     54   4.7  35.8  68.9    2.0    0.1    8.1   25.2   90.6
#> 55     55   3.2  24.1  54.2    0.5    0.1    5.1   16.5   82.8
#> 56     56   3.2  24.1  54.2    0.5    0.1    5.1   16.5   82.8
#> 57     57   3.2  24.1  54.2    0.5    0.1    5.1   16.5   82.8
#> 58     58   3.2  24.1  54.2    0.5    0.1    5.1   16.5   82.8
#> 59     59   3.2  24.1  54.2    0.5    0.1    5.1   16.5   82.8
#> 60     60   1.3  17.5  49.6    0.5    0.0    1.9    7.9   78.9
#> 61     61   1.3  17.5  49.6    0.5    0.0    1.9    7.9   78.9
#> 62     62   1.3  17.5  49.6    0.5    0.0    1.9    7.9   78.9
#> 63     63   1.3  17.5  49.6    0.5    0.0    1.9    7.9   78.9
#> 64     64   1.3  17.5  49.6    0.5    0.0    1.9    7.9   78.9
#> 65     65   1.1   9.3  34.4    0.4    0.0    1.6    6.3   68.8
#> 66     66   1.1   9.3  34.4    0.4    0.0    1.6    6.3   68.8
#> 67     67   1.1   9.3  34.4    0.4    0.0    1.6    6.3   68.8
#> 68     68   1.1   9.3  34.4    0.4    0.0    1.6    6.3   68.8
#> 69     69   1.1   9.3  34.4    0.4    0.0    1.6    6.3   68.8
#> 70     70   0.0   4.2  18.7    0.0    0.0    0.0    0.6   51.7
#> 71     71   0.0   4.2  18.7    0.0    0.0    0.0    0.6   51.7
#> 72     72   0.0   4.2  18.7    0.0    0.0    0.0    0.6   51.7
#> 73     73   0.0   4.2  18.7    0.0    0.0    0.0    0.6   51.7
#> 74     74   0.0   4.2  18.7    0.0    0.0    0.0    0.6   51.7
#> 75     75   0.0   1.1  12.2    0.0    0.0    0.0    0.0   50.8
#> 76     76   0.0   1.1  12.2    0.0    0.0    0.0    0.0   50.8
#> 77     77   0.0   1.1  12.2    0.0    0.0    0.0    0.0   50.8
#> 78     78   0.0   1.1  12.2    0.0    0.0    0.0    0.0   50.8
#> 79     79   0.0   1.1  12.2    0.0    0.0    0.0    0.0   50.8
#> 80     80   0.0   0.0   9.2    0.0    0.0    0.0    0.0   45.4
#> 81     81   0.0   0.0   9.2    0.0    0.0    0.0    0.0   45.4
#> 82     82   0.0   0.0   9.2    0.0    0.0    0.0    0.0   45.4
#> 83     83   0.0   0.0   9.2    0.0    0.0    0.0    0.0   45.4
#> 84     84   0.0   0.0   9.2    0.0    0.0    0.0    0.0   45.4
#> 85     85   0.0   0.0   8.8    0.0    0.0    0.0    0.0   33.8
#> 86     86   0.0   0.0   8.8    0.0    0.0    0.0    0.0   33.8
#> 87     87   0.0   0.0   8.8    0.0    0.0    0.0    0.0   33.8
#> 88     88   0.0   0.0   8.8    0.0    0.0    0.0    0.0   33.8
#> 89     89   0.0   0.0   8.8    0.0    0.0    0.0    0.0   33.8
#> 90     90   0.0   0.0   6.8    0.0    0.0    0.0    0.0   29.1
#> 91     91   0.0   0.0   6.8    0.0    0.0    0.0    0.0   29.1
#> 92     92   0.0   0.0   6.8    0.0    0.0    0.0    0.0   29.1
#> 93     93   0.0   0.0   6.8    0.0    0.0    0.0    0.0   29.1
#> 94     94   0.0   0.0   6.8    0.0    0.0    0.0    0.0   29.1
#> 95     95   0.0   0.0   0.0    0.0    0.0    0.0    0.0   29.1
#> 96     96   0.0   0.0   0.0    0.0    0.0    0.0    0.0   29.1
#> 97     97   0.0   0.0   0.0    0.0    0.0    0.0    0.0   29.1
#> 98     98   0.0   0.0   0.0    0.0    0.0    0.0    0.0   29.1
#> 99     99   0.0   0.0   0.0    0.0    0.0    0.0    0.0   29.1
#> 100   100   0.0   0.0   0.0    0.0    0.0    0.0    0.0   29.1

  # Given a specific PPI score (from 0 - 100), get the row of poverty
  # probabilities from PPI table it corresponds to
  ppiScore <- 50
  ppiKHM2015_gov[ppiKHM2015_gov$score == ppiScore, ]
#>    score nl100 nl150 nl200 median ppp125 ppp200 ppp250 ppp500
#> 50    50   4.7  35.8  68.9      2    0.1    8.1   25.2   90.6

  # Use subset() function to get the row of poverty probabilities corresponding
  # to specific PPI score
  ppiScore <- 50
  subset(ppiKHM2015_gov, score == ppiScore)
#>    score nl100 nl150 nl200 median ppp125 ppp200 ppp250 ppp500
#> 50    50   4.7  35.8  68.9      2    0.1    8.1   25.2   90.6

  # Given a specific PPI score (from 0 - 100), get a poverty probability
  # based on a specific poverty definition. In this example, the national
  # poverty line definition
  ppiScore <- 50
  ppiKHM2015_gov[ppiKHM2015_gov$score == ppiScore, "nl100"]
#> [1] 4.7