
Poverty Probability Index (PPI) lookup table for Kenya based on data from the 2021 Kenya Integrated Household Budget Survey (KIHBS)
Source:R/00_kenya.R
ppiKEN2024.RdPoverty Probability Index (PPI) lookup table for Kenya based on data from the 2021 Kenya Integrated Household Budget Survey (KIHBS)
Format
A data frame with 13 columns and 101 rows:
scorePPI score
nlFoodFood poverty line
nlAbsoluteAbsolute poverty line
ppp190Below $1.90 per day purchasing power parity (2011)
ppp320Below $3.20 per day purchasing power parity (2011)
ppp550Below $5.50 per day purchasing power parity (2011)
ppp215Below $2.15 per day purchasing power parity (2017)
ppp365Below $3.65 per day purchasing power parity (2017)
ppp685Below $6.85 per day purchasing power parity (2017)
percentile20Below 20th percentile poverty line
percentile40Below 40th percentile poverty line
percentile60Below 60th percentile poverty line
percentile80Below 80th percentile poverty line
Examples
# Access Kenya PPI table
ppiKEN2024
#> # A tibble: 101 × 13
#> score nlFood nlAbsolute ppp190 ppp320 ppp550 ppp215 ppp365 ppp685
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0 81.9 88.4 94.7 98.8 99.8 93.1 98.5 99.8
#> 2 1 81.1 87.8 94.3 98.7 99.8 92.5 98.4 99.8
#> 3 2 80.2 87.1 93.8 98.6 99.8 92.0 98.3 99.8
#> 4 3 79.4 86.4 93.4 98.5 99.8 91.4 98.2 99.8
#> 5 4 78.5 85.7 92.9 98.4 99.7 90.7 98.0 99.8
#> 6 5 77.6 85.0 92.4 98.3 99.7 90.0 97.9 99.7
#> 7 6 76.6 84.2 91.8 98.1 99.7 89.3 97.8 99.7
#> 8 7 75.6 83.4 91.3 98.0 99.7 88.5 97.6 99.7
#> 9 8 74.6 82.5 90.6 97.9 99.7 87.7 97.4 99.7
#> 10 9 73.6 81.6 90.0 97.7 99.7 86.8 97.2 99.7
#> # ℹ 91 more rows
#> # ℹ 4 more variables: percentile20 <dbl>, percentile40 <dbl>,
#> # percentile60 <dbl>, percentile80 <dbl>
# Given a specific PPI score (from 0 - 100), get the row of poverty
# probabilities from PPI table it corresponds to
ppiScore <- 50
ppiKEN2024[ppiKEN2024$score == ppiScore, ]
#> # A tibble: 1 × 13
#> score nlFood nlAbsolute ppp190 ppp320 ppp550 ppp215 ppp365 ppp685 percentile20
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 50 23.8 27.5 28.7 71.8 94.9 20.6 66.4 95.3 10.5
#> # ℹ 3 more variables: percentile40 <dbl>, percentile60 <dbl>,
#> # percentile80 <dbl>
# Use subset() function to get the row of poverty probabilities corresponding
# to specific PPI score
ppiScore <- 50
subset(ppiKEN2024, score == ppiScore)
#> # A tibble: 1 × 13
#> score nlFood nlAbsolute ppp190 ppp320 ppp550 ppp215 ppp365 ppp685 percentile20
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 50 23.8 27.5 28.7 71.8 94.9 20.6 66.4 95.3 10.5
#> # ℹ 3 more variables: percentile40 <dbl>, percentile60 <dbl>,
#> # percentile80 <dbl>
# Given a specific PPI score (from 0 - 100), get a poverty probability
# based on a specific poverty definition. In this example, the USAID
# extreme poverty definition
ppiScore <- 50
ppiKEN2024[ppiKEN2024$score == ppiScore, "nlFood"]
#> # A tibble: 1 × 1
#> nlFood
#> <dbl>
#> 1 23.8