Skip to contents

Poverty Probability Index (PPI) lookup table for Kenya based on data from the 2021 Kenya Integrated Household Budget Survey (KIHBS)

Usage

ppiKEN2024

Format

A data frame with 13 columns and 101 rows:

score

PPI score

nlFood

Food poverty line

nlAbsolute

Absolute poverty line

ppp190

Below $1.90 per day purchasing power parity (2011)

ppp320

Below $3.20 per day purchasing power parity (2011)

ppp550

Below $5.50 per day purchasing power parity (2011)

ppp215

Below $2.15 per day purchasing power parity (2017)

ppp365

Below $3.65 per day purchasing power parity (2017)

ppp685

Below $6.85 per day purchasing power parity (2017)

percentile20

Below 20th percentile poverty line

percentile40

Below 40th percentile poverty line

percentile60

Below 60th percentile poverty line

percentile80

Below 80th percentile poverty line

Examples

  # Access Kenya PPI table
  ppiKEN2024
#> # A tibble: 101 × 13
#>    score nlFood nlAbsolute ppp190 ppp320 ppp550 ppp215 ppp365 ppp685
#>    <dbl>  <dbl>      <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
#>  1     0   81.9       88.4   94.7   98.8   99.8   93.1   98.5   99.8
#>  2     1   81.1       87.8   94.3   98.7   99.8   92.5   98.4   99.8
#>  3     2   80.2       87.1   93.8   98.6   99.8   92.0   98.3   99.8
#>  4     3   79.4       86.4   93.4   98.5   99.8   91.4   98.2   99.8
#>  5     4   78.5       85.7   92.9   98.4   99.7   90.7   98.0   99.8
#>  6     5   77.6       85.0   92.4   98.3   99.7   90.0   97.9   99.7
#>  7     6   76.6       84.2   91.8   98.1   99.7   89.3   97.8   99.7
#>  8     7   75.6       83.4   91.3   98.0   99.7   88.5   97.6   99.7
#>  9     8   74.6       82.5   90.6   97.9   99.7   87.7   97.4   99.7
#> 10     9   73.6       81.6   90.0   97.7   99.7   86.8   97.2   99.7
#> # ℹ 91 more rows
#> # ℹ 4 more variables: percentile20 <dbl>, percentile40 <dbl>,
#> #   percentile60 <dbl>, percentile80 <dbl>

  # Given a specific PPI score (from 0 - 100), get the row of poverty
  # probabilities from PPI table it corresponds to
  ppiScore <- 50
  ppiKEN2024[ppiKEN2024$score == ppiScore, ]
#> # A tibble: 1 × 13
#>   score nlFood nlAbsolute ppp190 ppp320 ppp550 ppp215 ppp365 ppp685 percentile20
#>   <dbl>  <dbl>      <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>        <dbl>
#> 1    50   23.8       27.5   28.7   71.8   94.9   20.6   66.4   95.3         10.5
#> # ℹ 3 more variables: percentile40 <dbl>, percentile60 <dbl>,
#> #   percentile80 <dbl>

  # Use subset() function to get the row of poverty probabilities corresponding
  # to specific PPI score
  ppiScore <- 50
  subset(ppiKEN2024, score == ppiScore)
#> # A tibble: 1 × 13
#>   score nlFood nlAbsolute ppp190 ppp320 ppp550 ppp215 ppp365 ppp685 percentile20
#>   <dbl>  <dbl>      <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>        <dbl>
#> 1    50   23.8       27.5   28.7   71.8   94.9   20.6   66.4   95.3         10.5
#> # ℹ 3 more variables: percentile40 <dbl>, percentile60 <dbl>,
#> #   percentile80 <dbl>

  # Given a specific PPI score (from 0 - 100), get a poverty probability
  # based on a specific poverty definition. In this example, the USAID
  # extreme poverty definition
  ppiScore <- 50
  ppiKEN2024[ppiKEN2024$score == ppiScore, "nlFood"]
#> # A tibble: 1 × 1
#>   nlFood
#>    <dbl>
#> 1   23.8