
Poverty Probability Index (PPI) lookup table for Kenya based on data from the 2021 Kenya Integrated Household Budget Survey (KIHBS)
Source:R/00_kenya.R
ppiKEN2024.Rd
Poverty Probability Index (PPI) lookup table for Kenya based on data from the 2021 Kenya Integrated Household Budget Survey (KIHBS)
Format
A data frame with 13 columns and 101 rows:
score
PPI score
nlFood
Food poverty line
nlAbsolute
Absolute poverty line
ppp190
Below $1.90 per day purchasing power parity (2011)
ppp320
Below $3.20 per day purchasing power parity (2011)
ppp550
Below $5.50 per day purchasing power parity (2011)
ppp215
Below $2.15 per day purchasing power parity (2017)
ppp365
Below $3.65 per day purchasing power parity (2017)
ppp685
Below $6.85 per day purchasing power parity (2017)
percentile20
Below 20th percentile poverty line
percentile40
Below 40th percentile poverty line
percentile60
Below 60th percentile poverty line
percentile80
Below 80th percentile poverty line
Examples
# Access Kenya PPI table
ppiKEN2024
#> # A tibble: 101 × 13
#> score nlFood nlAbsolute ppp190 ppp320 ppp550 ppp215 ppp365 ppp685
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0 81.9 88.4 94.7 98.8 99.8 93.1 98.5 99.8
#> 2 1 81.1 87.8 94.3 98.7 99.8 92.5 98.4 99.8
#> 3 2 80.2 87.1 93.8 98.6 99.8 92.0 98.3 99.8
#> 4 3 79.4 86.4 93.4 98.5 99.8 91.4 98.2 99.8
#> 5 4 78.5 85.7 92.9 98.4 99.7 90.7 98.0 99.8
#> 6 5 77.6 85.0 92.4 98.3 99.7 90.0 97.9 99.7
#> 7 6 76.6 84.2 91.8 98.1 99.7 89.3 97.8 99.7
#> 8 7 75.6 83.4 91.3 98.0 99.7 88.5 97.6 99.7
#> 9 8 74.6 82.5 90.6 97.9 99.7 87.7 97.4 99.7
#> 10 9 73.6 81.6 90.0 97.7 99.7 86.8 97.2 99.7
#> # ℹ 91 more rows
#> # ℹ 4 more variables: percentile20 <dbl>, percentile40 <dbl>,
#> # percentile60 <dbl>, percentile80 <dbl>
# Given a specific PPI score (from 0 - 100), get the row of poverty
# probabilities from PPI table it corresponds to
ppiScore <- 50
ppiKEN2024[ppiKEN2024$score == ppiScore, ]
#> # A tibble: 1 × 13
#> score nlFood nlAbsolute ppp190 ppp320 ppp550 ppp215 ppp365 ppp685 percentile20
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 50 23.8 27.5 28.7 71.8 94.9 20.6 66.4 95.3 10.5
#> # ℹ 3 more variables: percentile40 <dbl>, percentile60 <dbl>,
#> # percentile80 <dbl>
# Use subset() function to get the row of poverty probabilities corresponding
# to specific PPI score
ppiScore <- 50
subset(ppiKEN2024, score == ppiScore)
#> # A tibble: 1 × 13
#> score nlFood nlAbsolute ppp190 ppp320 ppp550 ppp215 ppp365 ppp685 percentile20
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 50 23.8 27.5 28.7 71.8 94.9 20.6 66.4 95.3 10.5
#> # ℹ 3 more variables: percentile40 <dbl>, percentile60 <dbl>,
#> # percentile80 <dbl>
# Given a specific PPI score (from 0 - 100), get a poverty probability
# based on a specific poverty definition. In this example, the USAID
# extreme poverty definition
ppiScore <- 50
ppiKEN2024[ppiKEN2024$score == ppiScore, "nlFood"]
#> # A tibble: 1 × 1
#> nlFood
#> <dbl>
#> 1 23.8