Skip to contents

Poverty Probability Index (PPI) lookup table for Kenya

Usage

ppiKEN2011

Format

A data frame with 11 columns and 101 rows:

score

PPI score

nlFood

Food poverty line

nl100

National poverty line (100%)

nl150

National poverty line (150%)

extreme

USAID extreme poverty

ppp125

Below $1.25 per day purchasing power parity (2005)

ppp250

Below $2.50 per day purchasing power parity (2005)

ppp400

Below $4.00 per day purchasing power parity (2005)

ppp844

Below $8.44 per day purchasing power parity (2005)

ppp190

Below $1.90 per day purchasing power parity (2011)

ppp310

Below $3.10 per day purchasing power parity (2011)

Examples

  # Access Kenya PPI table
  ppiKEN2011
#>     score nlFood nl100 nl150 extreme ppp125 ppp250 ppp400 ppp844 ppp190 ppp310
#> 0       0   95.4  95.4 100.0    91.5  100.0  100.0  100.0  100.0  100.0  100.0
#> 1       1   95.4  95.4 100.0    91.5  100.0  100.0  100.0  100.0  100.0  100.0
#> 2       2   95.4  95.4 100.0    91.5  100.0  100.0  100.0  100.0  100.0  100.0
#> 3       3   95.4  95.4 100.0    91.5  100.0  100.0  100.0  100.0  100.0  100.0
#> 4       4   95.4  95.4 100.0    91.5  100.0  100.0  100.0  100.0  100.0  100.0
#> 5       5   72.6  95.0 100.0    73.9   97.5  100.0  100.0  100.0   93.3  100.0
#> 6       6   72.6  95.0 100.0    73.9   97.5  100.0  100.0  100.0   93.3  100.0
#> 7       7   72.6  95.0 100.0    73.9   97.5  100.0  100.0  100.0   93.3  100.0
#> 8       8   72.6  95.0 100.0    73.9   97.5  100.0  100.0  100.0   93.3  100.0
#> 9       9   72.6  95.0 100.0    73.9   97.5  100.0  100.0  100.0   93.3  100.0
#> 10     10   57.1  85.8  96.5    57.9   86.2   99.6  100.0  100.0   79.3   96.8
#> 11     11   57.1  85.8  96.5    57.9   86.2   99.6  100.0  100.0   79.3   96.8
#> 12     12   57.1  85.8  96.5    57.9   86.2   99.6  100.0  100.0   79.3   96.8
#> 13     13   57.1  85.8  96.5    57.9   86.2   99.6  100.0  100.0   79.3   96.8
#> 14     14   57.1  85.8  96.5    57.9   86.2   99.6  100.0  100.0   79.3   96.8
#> 15     15   47.4  82.5  95.7    46.9   86.0   99.3   99.7  100.0   79.5   96.4
#> 16     16   47.4  82.5  95.7    46.9   86.0   99.3   99.7  100.0   79.5   96.4
#> 17     17   47.4  82.5  95.7    46.9   86.0   99.3   99.7  100.0   79.5   96.4
#> 18     18   47.4  82.5  95.7    46.9   86.0   99.3   99.7  100.0   79.5   96.4
#> 19     19   47.4  82.5  95.7    46.9   86.0   99.3   99.7  100.0   79.5   96.4
#> 20     20   37.8  77.3  93.2    46.3   81.9   99.0   99.5  100.0   67.6   92.5
#> 21     21   37.8  77.3  93.2    46.3   81.9   99.0   99.5  100.0   67.6   92.5
#> 22     22   37.8  77.3  93.2    46.3   81.9   99.0   99.5  100.0   67.6   92.5
#> 23     23   37.8  77.3  93.2    46.3   81.9   99.0   99.5  100.0   67.6   92.5
#> 24     24   37.8  77.3  93.2    46.3   81.9   99.0   99.5  100.0   67.6   92.5
#> 25     25   32.8  67.9  89.1    36.5   70.1   96.2   99.4  100.0   63.2   87.9
#> 26     26   32.8  67.9  89.1    36.5   70.1   96.2   99.4  100.0   63.2   87.9
#> 27     27   32.8  67.9  89.1    36.5   70.1   96.2   99.4  100.0   63.2   87.9
#> 28     28   32.8  67.9  89.1    36.5   70.1   96.2   99.4  100.0   63.2   87.9
#> 29     29   32.8  67.9  89.1    36.5   70.1   96.2   99.4  100.0   63.2   87.9
#> 30     30   23.5  63.7  83.3    27.6   63.1   95.4   98.6   99.9   52.4   85.7
#> 31     31   23.5  63.7  83.3    27.6   63.1   95.4   98.6   99.9   52.4   85.7
#> 32     32   23.5  63.7  83.3    27.6   63.1   95.4   98.6   99.9   52.4   85.7
#> 33     33   23.5  63.7  83.3    27.6   63.1   95.4   98.6   99.9   52.4   85.7
#> 34     34   23.5  63.7  83.3    27.6   63.1   95.4   98.6   99.9   52.4   85.7
#> 35     35   12.7  46.4  75.7    16.8   49.0   91.8   98.2   99.9   39.4   73.0
#> 36     36   12.7  46.4  75.7    16.8   49.0   91.8   98.2   99.9   39.4   73.0
#> 37     37   12.7  46.4  75.7    16.8   49.0   91.8   98.2   99.9   39.4   73.0
#> 38     38   12.7  46.4  75.7    16.8   49.0   91.8   98.2   99.9   39.4   73.0
#> 39     39   12.7  46.4  75.7    16.8   49.0   91.8   98.2   99.9   39.4   73.0
#> 40     40    9.9  36.9  64.8    15.4   35.1   82.0   95.5   99.8   27.5   62.6
#> 41     41    9.9  36.9  64.8    15.4   35.1   82.0   95.5   99.8   27.5   62.6
#> 42     42    9.9  36.9  64.8    15.4   35.1   82.0   95.5   99.8   27.5   62.6
#> 43     43    9.9  36.9  64.8    15.4   35.1   82.0   95.5   99.8   27.5   62.6
#> 44     44    9.9  36.9  64.8    15.4   35.1   82.0   95.5   99.8   27.5   62.6
#> 45     45    4.7  30.0  64.3     7.4   24.9   75.3   93.8   99.5   14.4   54.6
#> 46     46    4.7  30.0  64.3     7.4   24.9   75.3   93.8   99.5   14.4   54.6
#> 47     47    4.7  30.0  64.3     7.4   24.9   75.3   93.8   99.5   14.4   54.6
#> 48     48    4.7  30.0  64.3     7.4   24.9   75.3   93.8   99.5   14.4   54.6
#> 49     49    4.7  30.0  64.3     7.4   24.9   75.3   93.8   99.5   14.4   54.6
#> 50     50    1.9  17.8  49.4     2.5    9.6   61.1   88.5   98.7    5.9   30.2
#> 51     51    1.9  17.8  49.4     2.5    9.6   61.1   88.5   98.7    5.9   30.2
#> 52     52    1.9  17.8  49.4     2.5    9.6   61.1   88.5   98.7    5.9   30.2
#> 53     53    1.9  17.8  49.4     2.5    9.6   61.1   88.5   98.7    5.9   30.2
#> 54     54    1.9  17.8  49.4     2.5    9.6   61.1   88.5   98.7    5.9   30.2
#> 55     55    0.9  13.9  41.8     2.3    6.8   44.4   75.5   95.6    4.2   22.5
#> 56     56    0.9  13.9  41.8     2.3    6.8   44.4   75.5   95.6    4.2   22.5
#> 57     57    0.9  13.9  41.8     2.3    6.8   44.4   75.5   95.6    4.2   22.5
#> 58     58    0.9  13.9  41.8     2.3    6.8   44.4   75.5   95.6    4.2   22.5
#> 59     59    0.9  13.9  41.8     2.3    6.8   44.4   75.5   95.6    4.2   22.5
#> 60     60    0.5   6.1  32.3     0.3    1.4   29.0   63.2   94.6    0.9   10.2
#> 61     61    0.5   6.1  32.3     0.3    1.4   29.0   63.2   94.6    0.9   10.2
#> 62     62    0.5   6.1  32.3     0.3    1.4   29.0   63.2   94.6    0.9   10.2
#> 63     63    0.5   6.1  32.3     0.3    1.4   29.0   63.2   94.6    0.9   10.2
#> 64     64    0.5   6.1  32.3     0.3    1.4   29.0   63.2   94.6    0.9   10.2
#> 65     65    0.9   4.6  20.4     1.2    0.8   20.3   47.4   87.5    0.4    7.0
#> 66     66    0.9   4.6  20.4     1.2    0.8   20.3   47.4   87.5    0.4    7.0
#> 67     67    0.9   4.6  20.4     1.2    0.8   20.3   47.4   87.5    0.4    7.0
#> 68     68    0.9   4.6  20.4     1.2    0.8   20.3   47.4   87.5    0.4    7.0
#> 69     69    0.9   4.6  20.4     1.2    0.8   20.3   47.4   87.5    0.4    7.0
#> 70     70    0.2   3.8  11.1     0.2    0.1    8.9   31.7   78.7    0.2    1.7
#> 71     71    0.2   3.8  11.1     0.2    0.1    8.9   31.7   78.7    0.2    1.7
#> 72     72    0.2   3.8  11.1     0.2    0.1    8.9   31.7   78.7    0.2    1.7
#> 73     73    0.2   3.8  11.1     0.2    0.1    8.9   31.7   78.7    0.2    1.7
#> 74     74    0.2   3.8  11.1     0.2    0.1    8.9   31.7   78.7    0.2    1.7
#> 75     75    0.0   0.0   4.1     0.0    0.1    5.4   21.1   70.6    0.0    2.3
#> 76     76    0.0   0.0   4.1     0.0    0.1    5.4   21.1   70.6    0.0    2.3
#> 77     77    0.0   0.0   4.1     0.0    0.1    5.4   21.1   70.6    0.0    2.3
#> 78     78    0.0   0.0   4.1     0.0    0.1    5.4   21.1   70.6    0.0    2.3
#> 79     79    0.0   0.0   4.1     0.0    0.1    5.4   21.1   70.6    0.0    2.3
#> 80     80    0.4   0.4   6.7     0.4    0.1    3.0   10.8   60.0    0.4    0.4
#> 81     81    0.4   0.4   6.7     0.4    0.1    3.0   10.8   60.0    0.4    0.4
#> 82     82    0.4   0.4   6.7     0.4    0.1    3.0   10.8   60.0    0.4    0.4
#> 83     83    0.4   0.4   6.7     0.4    0.1    3.0   10.8   60.0    0.4    0.4
#> 84     84    0.4   0.4   6.7     0.4    0.1    3.0   10.8   60.0    0.4    0.4
#> 85     85    0.0   0.0   4.1     0.0    0.0    1.2    4.7   43.3    0.0    0.0
#> 86     86    0.0   0.0   4.1     0.0    0.0    1.2    4.7   43.3    0.0    0.0
#> 87     87    0.0   0.0   4.1     0.0    0.0    1.2    4.7   43.3    0.0    0.0
#> 88     88    0.0   0.0   4.1     0.0    0.0    1.2    4.7   43.3    0.0    0.0
#> 89     89    0.0   0.0   4.1     0.0    0.0    1.2    4.7   43.3    0.0    0.0
#> 90     90    0.0   0.0   0.0     0.0    0.0    0.0    0.0   24.3    0.0    0.0
#> 91     91    0.0   0.0   0.0     0.0    0.0    0.0    0.0   24.3    0.0    0.0
#> 92     92    0.0   0.0   0.0     0.0    0.0    0.0    0.0   24.3    0.0    0.0
#> 93     93    0.0   0.0   0.0     0.0    0.0    0.0    0.0   24.3    0.0    0.0
#> 94     94    0.0   0.0   0.0     0.0    0.0    0.0    0.0   24.3    0.0    0.0
#> 95     95    0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0    0.0    0.0
#> 96     96    0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0    0.0    0.0
#> 97     97    0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0    0.0    0.0
#> 98     98    0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0    0.0    0.0
#> 99     99    0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0    0.0    0.0
#> 100   100    0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0    0.0    0.0

  # Given a specific PPI score (from 0 - 100), get the row of poverty
  # probabilities from PPI table it corresponds to
  ppiScore <- 50
  ppiKEN2011[ppiKEN2011$score == ppiScore, ]
#>    score nlFood nl100 nl150 extreme ppp125 ppp250 ppp400 ppp844 ppp190 ppp310
#> 50    50    1.9  17.8  49.4     2.5    9.6   61.1   88.5   98.7    5.9   30.2

  # Use subset() function to get the row of poverty probabilities corresponding
  # to specific PPI score
  ppiScore <- 50
  subset(ppiKEN2011, score == ppiScore)
#>    score nlFood nl100 nl150 extreme ppp125 ppp250 ppp400 ppp844 ppp190 ppp310
#> 50    50    1.9  17.8  49.4     2.5    9.6   61.1   88.5   98.7    5.9   30.2

  # Given a specific PPI score (from 0 - 100), get a poverty probability
  # based on a specific poverty definition. In this example, the USAID
  # extreme poverty definition
  ppiScore <- 50
  ppiKEN2011[ppiKEN2011$score == ppiScore, "extreme"]
#> [1] 2.5