Skip to contents

Poverty Probability Index (PPI) lookup table for Jordan

Usage

ppiJOR2010

Format

A data frame with 10 columns and 101 rows:

score

PPI score

nl100

National poverty line (100%)

nl150

National poverty line (150%)

nl200

National poverty line (200%)

nl250

National poverty line (250%)

extreme

USAID extreme poverty

ppp125

Below $1.25 per day purchasing power parity (2005)

ppp250

Below $2.50 per day purchasing power parity (2005)

ppp375

Below $3.75 per day purchasing power parity (2005)

ppp500

Below $5.00 per day purchasing power parity (2005)

Examples

  # Access Jordan PPI table
  ppiJOR2010
#>      score nl100 nl150 nl200 nl250 extreme ppp125 ppp250 ppp375 ppp500
#> 1        0  86.7 100.0 100.0 100.0    85.7   21.8   85.7  100.0  100.0
#> 2        1  86.7 100.0 100.0 100.0    85.7   21.8   85.7  100.0  100.0
#> 3        2  86.7 100.0 100.0 100.0    85.7   21.8   85.7  100.0  100.0
#> 4        3  86.7 100.0 100.0 100.0    85.7   21.8   85.7  100.0  100.0
#> 5        4  86.7 100.0 100.0 100.0    85.7   21.8   85.7  100.0  100.0
#> 6        5  65.7  94.4  99.2 100.0    44.7    2.7   51.6   90.4   96.6
#> 7        6  65.7  94.4  99.2 100.0    44.7    2.7   51.6   90.4   96.6
#> 8        7  65.7  94.4  99.2 100.0    44.7    2.7   51.6   90.4   96.6
#> 9        8  65.7  94.4  99.2 100.0    44.7    2.7   51.6   90.4   96.6
#> 10       9  65.7  94.4  99.2 100.0    44.7    2.7   51.6   90.4   96.6
#> 11      10  63.7  86.9  97.8  99.2    42.7    1.2   46.6   78.7   93.4
#> 12      11  63.7  86.9  97.8  99.2    42.7    1.2   46.6   78.7   93.4
#> 13      12  63.7  86.9  97.8  99.2    42.7    1.2   46.6   78.7   93.4
#> 14      13  63.7  86.9  97.8  99.2    42.7    1.2   46.6   78.7   93.4
#> 15      14  63.7  86.9  97.8  99.2    42.7    1.2   46.6   78.7   93.4
#> 16      15  39.5  78.5  96.2  98.5    22.2    2.1   26.6   68.2   90.7
#> 17      16  39.5  78.5  96.2  98.5    22.2    2.1   26.6   68.2   90.7
#> 18      17  39.5  78.5  96.2  98.5    22.2    2.1   26.6   68.2   90.7
#> 19      18  39.5  78.5  96.2  98.5    22.2    2.1   26.6   68.2   90.7
#> 20      19  39.5  78.5  96.2  98.5    22.2    2.1   26.6   68.2   90.7
#> 21      20  22.6  66.2  86.7  94.1     9.5    0.0   13.9   53.7   77.6
#> 22      21  22.6  66.2  86.7  94.1     9.5    0.0   13.9   53.7   77.6
#> 23      22  22.6  66.2  86.7  94.1     9.5    0.0   13.9   53.7   77.6
#> 24      23  22.6  66.2  86.7  94.1     9.5    0.0   13.9   53.7   77.6
#> 25      24  22.6  66.2  86.7  94.1     9.5    0.0   13.9   53.7   77.6
#> 26      25  16.0  52.0  74.4  89.5     6.6    0.0    8.8   37.1   63.2
#> 27      26  16.0  52.0  74.4  89.5     6.6    0.0    8.8   37.1   63.2
#> 28      27  16.0  52.0  74.4  89.5     6.6    0.0    8.8   37.1   63.2
#> 29      28  16.0  52.0  74.4  89.5     6.6    0.0    8.8   37.1   63.2
#> 30      29  16.0  52.0  74.4  89.5     6.6    0.0    8.8   37.1   63.2
#> 31      30   7.7  43.0  73.6  87.9     2.1    0.0    3.7   27.3   60.0
#> 32      31   7.7  43.0  73.6  87.9     2.1    0.0    3.7   27.3   60.0
#> 33      32   7.7  43.0  73.6  87.9     2.1    0.0    3.7   27.3   60.0
#> 34      33   7.7  43.0  73.6  87.9     2.1    0.0    3.7   27.3   60.0
#> 35      34   7.7  43.0  73.6  87.9     2.1    0.0    3.7   27.3   60.0
#> 36      35   3.3  27.3  57.2  76.2     0.7    0.0    2.0   14.0   42.8
#> 37      36   3.3  27.3  57.2  76.2     0.7    0.0    2.0   14.0   42.8
#> 38      37   3.3  27.3  57.2  76.2     0.7    0.0    2.0   14.0   42.8
#> 39      38   3.3  27.3  57.2  76.2     0.7    0.0    2.0   14.0   42.8
#> 40      39   3.3  27.3  57.2  76.2     0.7    0.0    2.0   14.0   42.8
#> 41      40   1.5  16.8  46.4  68.5     0.5    0.0    0.4    8.6   30.3
#> 42      41   1.5  16.8  46.4  68.5     0.5    0.0    0.4    8.6   30.3
#> 43      42   1.5  16.8  46.4  68.5     0.5    0.0    0.4    8.6   30.3
#> 44      43   1.5  16.8  46.4  68.5     0.5    0.0    0.4    8.6   30.3
#> 45      44   1.5  16.8  46.4  68.5     0.5    0.0    0.4    8.6   30.3
#> 46      45   0.2   6.9  29.3  50.7     0.0    0.0    0.2    3.3   15.9
#> 47      46   0.2   6.9  29.3  50.7     0.0    0.0    0.2    3.3   15.9
#> 48      47   0.2   6.9  29.3  50.7     0.0    0.0    0.2    3.3   15.9
#> 49      48   0.2   6.9  29.3  50.7     0.0    0.0    0.2    3.3   15.9
#> 50      49   0.2   6.9  29.3  50.7     0.0    0.0    0.2    3.3   15.9
#> 51      50   0.9   3.6  20.0  39.8     0.0    0.0    0.2    1.4    9.9
#> 52      51   0.9   3.6  20.0  39.8     0.0    0.0    0.2    1.4    9.9
#> 53      52   0.9   3.6  20.0  39.8     0.0    0.0    0.2    1.4    9.9
#> 54      53   0.9   3.6  20.0  39.8     0.0    0.0    0.2    1.4    9.9
#> 55      54   0.9   3.6  20.0  39.8     0.0    0.0    0.2    1.4    9.9
#> 56      55   0.0   2.1   9.5  24.6     0.0    0.0    0.0    0.1    5.8
#> 57      56   0.0   2.1   9.5  24.6     0.0    0.0    0.0    0.1    5.8
#> 58      57   0.0   2.1   9.5  24.6     0.0    0.0    0.0    0.1    5.8
#> 59      58   0.0   2.1   9.5  24.6     0.0    0.0    0.0    0.1    5.8
#> 60      59   0.0   2.1   9.5  24.6     0.0    0.0    0.0    0.1    5.8
#> 61      60   0.0   0.7   4.2  15.3     0.0    0.0    0.0    0.1    1.3
#> 62      61   0.0   0.7   4.2  15.3     0.0    0.0    0.0    0.1    1.3
#> 63      62   0.0   0.7   4.2  15.3     0.0    0.0    0.0    0.1    1.3
#> 64      63   0.0   0.7   4.2  15.3     0.0    0.0    0.0    0.1    1.3
#> 65      64   0.0   0.7   4.2  15.3     0.0    0.0    0.0    0.1    1.3
#> 66      65   0.0   0.0   1.1   5.8     0.0    0.0    0.0    0.0    0.4
#> 67      66   0.0   0.0   1.1   5.8     0.0    0.0    0.0    0.0    0.4
#> 68      67   0.0   0.0   1.1   5.8     0.0    0.0    0.0    0.0    0.4
#> 69      68   0.0   0.0   1.1   5.8     0.0    0.0    0.0    0.0    0.4
#> 70      69   0.0   0.0   1.1   5.8     0.0    0.0    0.0    0.0    0.4
#> 71      70   0.0   0.0   2.0   4.5     0.0    0.0    0.0    0.0    0.4
#> 72      71   0.0   0.0   2.0   4.5     0.0    0.0    0.0    0.0    0.4
#> 73      72   0.0   0.0   2.0   4.5     0.0    0.0    0.0    0.0    0.4
#> 74      73   0.0   0.0   2.0   4.5     0.0    0.0    0.0    0.0    0.4
#> 75      74   0.0   0.0   2.0   4.5     0.0    0.0    0.0    0.0    0.4
#> 76      75   0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 77      76   0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 78      77   0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 79      78   0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 80      79   0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 81      80   0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 82      81   0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 83      82   0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 84      83   0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 85      84   0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 86      85   0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 87      86   0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 88      87   0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 89      88   0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 90      89   0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 91      90   0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 92      91   0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 93      92   0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 94      93   0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 95      94   0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 96      95   0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 97      96   0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 98      97   0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 99      98   0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 100     99   0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 1001   100   0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0

  # Given a specific PPI score (from 0 - 100), get the row of poverty
  # probabilities from PPI table it corresponds to
  ppiScore <- 50
  ppiJOR2010[ppiJOR2010$score == ppiScore, ]
#>    score nl100 nl150 nl200 nl250 extreme ppp125 ppp250 ppp375 ppp500
#> 51    50   0.9   3.6    20  39.8       0      0    0.2    1.4    9.9

  # Use subset() function to get the row of poverty probabilities corresponding
  # to specific PPI score
  ppiScore <- 50
  subset(ppiJOR2010, score == ppiScore)
#>    score nl100 nl150 nl200 nl250 extreme ppp125 ppp250 ppp375 ppp500
#> 51    50   0.9   3.6    20  39.8       0      0    0.2    1.4    9.9

  # Given a specific PPI score (from 0 - 100), get a poverty probability
  # based on a specific poverty definition. In this example, the USAID
  # extreme poverty definition
  ppiScore <- 50
  ppiJOR2010[ppiJOR2010$score == ppiScore, "extreme"]
#> [1] 0