Skip to contents

Poverty Probability Index (PPI) lookup table for India using r66 poverty definitions

Usage

ppiIND2016_r66

Format

A data frame with 8 columns and 101 rows:

score

PPI score

tendulkar

National tendulkar

tendulkar100

National tendulkar (100%)

tendulkar150

National tendulkar (150%)

tendulkar200

National tendulkar (200%)

ppp125

Below $1.25 per day purchasing power parity (2005)

ppp188

Below $1.88 per day purchasing power parity (2005)

ppp250

Below $2.50 per day purchasing power parity (2005)

Examples

  # Access India PPI table
  ppiIND2016_r66
#>     score tendulkar tendulkar100 tendulkar150 tendulkar200 ppp125 ppp188 ppp250
#> 0       0      74.3         57.7         93.6         99.0   79.5   98.6   99.6
#> 1       1      74.3         57.7         93.6         99.0   79.5   98.6   99.6
#> 2       2      74.3         57.7         93.6         99.0   79.5   98.6   99.6
#> 3       3      74.3         57.7         93.6         99.0   79.5   98.6   99.6
#> 4       4      74.3         57.7         93.6         99.0   79.5   98.6   99.6
#> 5       5      61.5         47.3         90.8         98.3   74.3   97.5   99.4
#> 6       6      61.5         47.3         90.8         98.3   74.3   97.5   99.4
#> 7       7      61.5         47.3         90.8         98.3   74.3   97.5   99.4
#> 8       8      61.5         47.3         90.8         98.3   74.3   97.5   99.4
#> 9       9      61.5         47.3         90.8         98.3   74.3   97.5   99.4
#> 10     10      53.5         38.5         85.8         97.1   64.8   95.5   99.0
#> 11     11      53.5         38.5         85.8         97.1   64.8   95.5   99.0
#> 12     12      53.5         38.5         85.8         97.1   64.8   95.5   99.0
#> 13     13      53.5         38.5         85.8         97.1   64.8   95.5   99.0
#> 14     14      53.5         38.5         85.8         97.1   64.8   95.5   99.0
#> 15     15      42.4         29.0         78.4         94.8   55.7   92.3   98.1
#> 16     16      42.4         29.0         78.4         94.8   55.7   92.3   98.1
#> 17     17      42.4         29.0         78.4         94.8   55.7   92.3   98.1
#> 18     18      42.4         29.0         78.4         94.8   55.7   92.3   98.1
#> 19     19      42.4         29.0         78.4         94.8   55.7   92.3   98.1
#> 20     20      35.8         21.2         71.5         92.0   45.2   87.7   97.0
#> 21     21      35.8         21.2         71.5         92.0   45.2   87.7   97.0
#> 22     22      35.8         21.2         71.5         92.0   45.2   87.7   97.0
#> 23     23      35.8         21.2         71.5         92.0   45.2   87.7   97.0
#> 24     24      35.8         21.2         71.5         92.0   45.2   87.7   97.0
#> 25     25      27.8         17.5         63.8         89.1   38.1   83.4   95.7
#> 26     26      27.8         17.5         63.8         89.1   38.1   83.4   95.7
#> 27     27      27.8         17.5         63.8         89.1   38.1   83.4   95.7
#> 28     28      27.8         17.5         63.8         89.1   38.1   83.4   95.7
#> 29     29      27.8         17.5         63.8         89.1   38.1   83.4   95.7
#> 30     30      19.2         12.6         57.8         85.5   32.5   79.3   93.9
#> 31     31      19.2         12.6         57.8         85.5   32.5   79.3   93.9
#> 32     32      19.2         12.6         57.8         85.5   32.5   79.3   93.9
#> 33     33      19.2         12.6         57.8         85.5   32.5   79.3   93.9
#> 34     34      19.2         12.6         57.8         85.5   32.5   79.3   93.9
#> 35     35      13.1          7.4         46.3         77.7   21.9   70.6   89.4
#> 36     36      13.1          7.4         46.3         77.7   21.9   70.6   89.4
#> 37     37      13.1          7.4         46.3         77.7   21.9   70.6   89.4
#> 38     38      13.1          7.4         46.3         77.7   21.9   70.6   89.4
#> 39     39      13.1          7.4         46.3         77.7   21.9   70.6   89.4
#> 40     40       9.9          5.7         37.1         68.6   16.6   60.9   84.9
#> 41     41       9.9          5.7         37.1         68.6   16.6   60.9   84.9
#> 42     42       9.9          5.7         37.1         68.6   16.6   60.9   84.9
#> 43     43       9.9          5.7         37.1         68.6   16.6   60.9   84.9
#> 44     44       9.9          5.7         37.1         68.6   16.6   60.9   84.9
#> 45     45       7.1          3.9         24.8         55.9   11.2   46.4   75.1
#> 46     46       7.1          3.9         24.8         55.9   11.2   46.4   75.1
#> 47     47       7.1          3.9         24.8         55.9   11.2   46.4   75.1
#> 48     48       7.1          3.9         24.8         55.9   11.2   46.4   75.1
#> 49     49       7.1          3.9         24.8         55.9   11.2   46.4   75.1
#> 50     50       4.5          2.2         18.4         45.9    6.4   36.6   66.4
#> 51     51       4.5          2.2         18.4         45.9    6.4   36.6   66.4
#> 52     52       4.5          2.2         18.4         45.9    6.4   36.6   66.4
#> 53     53       4.5          2.2         18.4         45.9    6.4   36.6   66.4
#> 54     54       4.5          2.2         18.4         45.9    6.4   36.6   66.4
#> 55     55       1.7          1.0         10.8         33.3    2.9   25.1   51.5
#> 56     56       1.7          1.0         10.8         33.3    2.9   25.1   51.5
#> 57     57       1.7          1.0         10.8         33.3    2.9   25.1   51.5
#> 58     58       1.7          1.0         10.8         33.3    2.9   25.1   51.5
#> 59     59       1.7          1.0         10.8         33.3    2.9   25.1   51.5
#> 60     60       0.5          0.7          7.2         26.9    1.7   19.5   44.7
#> 61     61       0.5          0.7          7.2         26.9    1.7   19.5   44.7
#> 62     62       0.5          0.7          7.2         26.9    1.7   19.5   44.7
#> 63     63       0.5          0.7          7.2         26.9    1.7   19.5   44.7
#> 64     64       0.5          0.7          7.2         26.9    1.7   19.5   44.7
#> 65     65       0.5          0.3          4.8         21.6    0.6   14.3   39.4
#> 66     66       0.5          0.3          4.8         21.6    0.6   14.3   39.4
#> 67     67       0.5          0.3          4.8         21.6    0.6   14.3   39.4
#> 68     68       0.5          0.3          4.8         21.6    0.6   14.3   39.4
#> 69     69       0.5          0.3          4.8         21.6    0.6   14.3   39.4
#> 70     70       0.2          0.1          2.2         13.1    0.4    7.7   28.2
#> 71     71       0.2          0.1          2.2         13.1    0.4    7.7   28.2
#> 72     72       0.2          0.1          2.2         13.1    0.4    7.7   28.2
#> 73     73       0.2          0.1          2.2         13.1    0.4    7.7   28.2
#> 74     74       0.2          0.1          2.2         13.1    0.4    7.7   28.2
#> 75     75       0.1          0.0          1.3          8.6    0.1    4.5   18.5
#> 76     76       0.1          0.0          1.3          8.6    0.1    4.5   18.5
#> 77     77       0.1          0.0          1.3          8.6    0.1    4.5   18.5
#> 78     78       0.1          0.0          1.3          8.6    0.1    4.5   18.5
#> 79     79       0.1          0.0          1.3          8.6    0.1    4.5   18.5
#> 80     80       0.1          0.0          0.7          5.1    0.0    2.9   13.2
#> 81     81       0.1          0.0          0.7          5.1    0.0    2.9   13.2
#> 82     82       0.1          0.0          0.7          5.1    0.0    2.9   13.2
#> 83     83       0.1          0.0          0.7          5.1    0.0    2.9   13.2
#> 84     84       0.1          0.0          0.7          5.1    0.0    2.9   13.2
#> 85     85       0.0          0.0          0.1          3.0    0.0    0.8    7.9
#> 86     86       0.0          0.0          0.1          3.0    0.0    0.8    7.9
#> 87     87       0.0          0.0          0.1          3.0    0.0    0.8    7.9
#> 88     88       0.0          0.0          0.1          3.0    0.0    0.8    7.9
#> 89     89       0.0          0.0          0.1          3.0    0.0    0.8    7.9
#> 90     90       0.0          0.0          0.0          0.8    0.0    0.0    1.7
#> 91     91       0.0          0.0          0.0          0.8    0.0    0.0    1.7
#> 92     92       0.0          0.0          0.0          0.8    0.0    0.0    1.7
#> 93     93       0.0          0.0          0.0          0.8    0.0    0.0    1.7
#> 94     94       0.0          0.0          0.0          0.8    0.0    0.0    1.7
#> 95     95       0.0          0.0          0.0          0.0    0.0    0.0    0.0
#> 96     96       0.0          0.0          0.0          0.0    0.0    0.0    0.0
#> 97     97       0.0          0.0          0.0          0.0    0.0    0.0    0.0
#> 98     98       0.0          0.0          0.0          0.0    0.0    0.0    0.0
#> 99     99       0.0          0.0          0.0          0.0    0.0    0.0    0.0
#> 100   100       0.0          0.0          0.0          0.0    0.0    0.0    0.0

  # Given a specific PPI score (from 0 - 100), get the row of poverty
  # probabilities from PPI table it corresponds to
  ppiScore <- 50
  ppiIND2016_r66[ppiIND2016_r66$score == ppiScore, ]
#>    score tendulkar tendulkar100 tendulkar150 tendulkar200 ppp125 ppp188 ppp250
#> 50    50       4.5          2.2         18.4         45.9    6.4   36.6   66.4

  # Use subset() function to get the row of poverty probabilities corresponding
  # to specific PPI score
  ppiScore <- 50
  subset(ppiIND2016_r66, score == ppiScore)
#>    score tendulkar tendulkar100 tendulkar150 tendulkar200 ppp125 ppp188 ppp250
#> 50    50       4.5          2.2         18.4         45.9    6.4   36.6   66.4

  # Given a specific PPI score (from 0 - 100), get a poverty probability
  # based on a specific poverty definition. In this example, the national
  # tendulkar poverty definition
  ppiScore <- 50
  ppiIND2016_r66[ppiIND2016_r66$score == ppiScore, "tendulkar"]
#> [1] 4.5