Skip to contents

Poverty Probability Index (PPI) lookup table for India using r62 poverty definitions

Usage

ppiIND2016_r62

Format

A data frame with 7 columns and 101 rows:

score

PPI score

saxena

National saxena

ppp108

Below $1.08 per day purchasing power parity (1993)

ppp81

Below $0.81 per day purchasing power parity (1993)

ppp135

Below $1.35 per day purchasing power parity (1993)

ppp162

Below $1.62 per day purchasing power parity (1993)

ppp216

Below $2.16 per day purchasing power parity (1993)

Examples

  # Access India PPI table
  ppiIND2016_r62
#>     score saxena ppp108 ppp81 ppp135 ppp162 ppp216
#> 0       0   50.2   66.4  25.9   86.0   94.5   98.8
#> 1       1   50.2   66.4  25.9   86.0   94.5   98.8
#> 2       2   50.2   66.4  25.9   86.0   94.5   98.8
#> 3       3   50.2   66.4  25.9   86.0   94.5   98.8
#> 4       4   50.2   66.4  25.9   86.0   94.5   98.8
#> 5       5   37.6   52.9  21.8   76.7   89.9   98.0
#> 6       6   37.6   52.9  21.8   76.7   89.9   98.0
#> 7       7   37.6   52.9  21.8   76.7   89.9   98.0
#> 8       8   37.6   52.9  21.8   76.7   89.9   98.0
#> 9       9   37.6   52.9  21.8   76.7   89.9   98.0
#> 10     10   28.7   44.2  12.9   70.9   86.9   97.7
#> 11     11   28.7   44.2  12.9   70.9   86.9   97.7
#> 12     12   28.7   44.2  12.9   70.9   86.9   97.7
#> 13     13   28.7   44.2  12.9   70.9   86.9   97.7
#> 14     14   28.7   44.2  12.9   70.9   86.9   97.7
#> 15     15   18.7   31.9   8.9   61.9   80.7   95.9
#> 16     16   18.7   31.9   8.9   61.9   80.7   95.9
#> 17     17   18.7   31.9   8.9   61.9   80.7   95.9
#> 18     18   18.7   31.9   8.9   61.9   80.7   95.9
#> 19     19   18.7   31.9   8.9   61.9   80.7   95.9
#> 20     20   15.0   26.7   6.2   53.5   75.9   94.1
#> 21     21   15.0   26.7   6.2   53.5   75.9   94.1
#> 22     22   15.0   26.7   6.2   53.5   75.9   94.1
#> 23     23   15.0   26.7   6.2   53.5   75.9   94.1
#> 24     24   15.0   26.7   6.2   53.5   75.9   94.1
#> 25     25   11.5   19.6   3.7   45.3   66.3   88.8
#> 26     26   11.5   19.6   3.7   45.3   66.3   88.8
#> 27     27   11.5   19.6   3.7   45.3   66.3   88.8
#> 28     28   11.5   19.6   3.7   45.3   66.3   88.8
#> 29     29   11.5   19.6   3.7   45.3   66.3   88.8
#> 30     30    7.2   12.8   2.3   34.7   58.9   83.7
#> 31     31    7.2   12.8   2.3   34.7   58.9   83.7
#> 32     32    7.2   12.8   2.3   34.7   58.9   83.7
#> 33     33    7.2   12.8   2.3   34.7   58.9   83.7
#> 34     34    7.2   12.8   2.3   34.7   58.9   83.7
#> 35     35    5.1    9.0   1.6   25.4   45.5   76.2
#> 36     36    5.1    9.0   1.6   25.4   45.5   76.2
#> 37     37    5.1    9.0   1.6   25.4   45.5   76.2
#> 38     38    5.1    9.0   1.6   25.4   45.5   76.2
#> 39     39    5.1    9.0   1.6   25.4   45.5   76.2
#> 40     40    3.8    5.8   1.0   18.5   35.3   68.3
#> 41     41    3.8    5.8   1.0   18.5   35.3   68.3
#> 42     42    3.8    5.8   1.0   18.5   35.3   68.3
#> 43     43    3.8    5.8   1.0   18.5   35.3   68.3
#> 44     44    3.8    5.8   1.0   18.5   35.3   68.3
#> 45     45    2.8    3.6   0.5   12.6   23.9   53.8
#> 46     46    2.8    3.6   0.5   12.6   23.9   53.8
#> 47     47    2.8    3.6   0.5   12.6   23.9   53.8
#> 48     48    2.8    3.6   0.5   12.6   23.9   53.8
#> 49     49    2.8    3.6   0.5   12.6   23.9   53.8
#> 50     50    1.4    1.8   0.2    7.7   16.5   42.5
#> 51     51    1.4    1.8   0.2    7.7   16.5   42.5
#> 52     52    1.4    1.8   0.2    7.7   16.5   42.5
#> 53     53    1.4    1.8   0.2    7.7   16.5   42.5
#> 54     54    1.4    1.8   0.2    7.7   16.5   42.5
#> 55     55    0.9    0.6   0.1    4.0   10.0   29.4
#> 56     56    0.9    0.6   0.1    4.0   10.0   29.4
#> 57     57    0.9    0.6   0.1    4.0   10.0   29.4
#> 58     58    0.9    0.6   0.1    4.0   10.0   29.4
#> 59     59    0.9    0.6   0.1    4.0   10.0   29.4
#> 60     60    0.3    0.2   0.0    1.3    5.6   22.5
#> 61     61    0.3    0.2   0.0    1.3    5.6   22.5
#> 62     62    0.3    0.2   0.0    1.3    5.6   22.5
#> 63     63    0.3    0.2   0.0    1.3    5.6   22.5
#> 64     64    0.3    0.2   0.0    1.3    5.6   22.5
#> 65     65    0.2    0.1   0.0    1.0    3.4   15.5
#> 66     66    0.2    0.1   0.0    1.0    3.4   15.5
#> 67     67    0.2    0.1   0.0    1.0    3.4   15.5
#> 68     68    0.2    0.1   0.0    1.0    3.4   15.5
#> 69     69    0.2    0.1   0.0    1.0    3.4   15.5
#> 70     70    0.1    0.0   0.0    0.3    1.4   10.2
#> 71     71    0.1    0.0   0.0    0.3    1.4   10.2
#> 72     72    0.1    0.0   0.0    0.3    1.4   10.2
#> 73     73    0.1    0.0   0.0    0.3    1.4   10.2
#> 74     74    0.1    0.0   0.0    0.3    1.4   10.2
#> 75     75    0.0    0.0   0.0    0.1    0.5    4.9
#> 76     76    0.0    0.0   0.0    0.1    0.5    4.9
#> 77     77    0.0    0.0   0.0    0.1    0.5    4.9
#> 78     78    0.0    0.0   0.0    0.1    0.5    4.9
#> 79     79    0.0    0.0   0.0    0.1    0.5    4.9
#> 80     80    0.0    0.0   0.0    0.1    0.4    3.7
#> 81     81    0.0    0.0   0.0    0.1    0.4    3.7
#> 82     82    0.0    0.0   0.0    0.1    0.4    3.7
#> 83     83    0.0    0.0   0.0    0.1    0.4    3.7
#> 84     84    0.0    0.0   0.0    0.1    0.4    3.7
#> 85     85    0.0    0.0   0.0    0.0    0.2    1.0
#> 86     86    0.0    0.0   0.0    0.0    0.2    1.0
#> 87     87    0.0    0.0   0.0    0.0    0.2    1.0
#> 88     88    0.0    0.0   0.0    0.0    0.2    1.0
#> 89     89    0.0    0.0   0.0    0.0    0.2    1.0
#> 90     90    0.0    0.0   0.0    0.0    0.0    0.1
#> 91     91    0.0    0.0   0.0    0.0    0.0    0.1
#> 92     92    0.0    0.0   0.0    0.0    0.0    0.1
#> 93     93    0.0    0.0   0.0    0.0    0.0    0.1
#> 94     94    0.0    0.0   0.0    0.0    0.0    0.1
#> 95     95    0.0    0.0   0.0    0.0    0.0    0.0
#> 96     96    0.0    0.0   0.0    0.0    0.0    0.0
#> 97     97    0.0    0.0   0.0    0.0    0.0    0.0
#> 98     98    0.0    0.0   0.0    0.0    0.0    0.0
#> 99     99    0.0    0.0   0.0    0.0    0.0    0.0
#> 100   100    0.0    0.0   0.0    0.0    0.0    0.0

  # Given a specific PPI score (from 0 - 100), get the row of poverty
  # probabilities from PPI table it corresponds to
  ppiScore <- 50
  ppiIND2016_r62[ppiIND2016_r62$score == ppiScore, ]
#>    score saxena ppp108 ppp81 ppp135 ppp162 ppp216
#> 50    50    1.4    1.8   0.2    7.7   16.5   42.5

  # Use subset() function to get the row of poverty probabilities corresponding
  # to specific PPI score
  ppiScore <- 50
  subset(ppiIND2016_r62, score == ppiScore)
#>    score saxena ppp108 ppp81 ppp135 ppp162 ppp216
#> 50    50    1.4    1.8   0.2    7.7   16.5   42.5

  # Given a specific PPI score (from 0 - 100), get a poverty probability
  # based on a specific poverty definition. In this example, the national
  # saxena poverty definition
  ppiScore <- 50
  ppiIND2016_r62[ppiIND2016_r62$score == ppiScore, "saxena"]
#> [1] 1.4