Poverty Probability Index (PPI) lookup table for Indonesia using new poverty definitions
Source:R/00_indonesia.R
ppiIDN2012_a.Rd
Poverty Probability Index (PPI) lookup table for Indonesia using new poverty definitions
Format
A data frame with 9 columns and 101 rows:
score
PPI score
nl100
National poverty line (100%)
nl150
National poverty line (150%)
nl200
National poverty line (200%)
extreme
USAID extreme poverty
ppp125
Below $1.25 per day purchasing power parity (2005)
ppp250
Below $2.50 per day purchasing power parity (2005)
ppp190
Below $1.90 per day purchasing power parity (2011)
ppp310
Below $3.10 per day purchasing power parity (2011)
Examples
# Access Indonesia PPI table
ppiIDN2012_a
#> score nl100 nl150 nl200 extreme ppp125 ppp250 ppp190 ppp310
#> 0 0 66.3 96.1 99.0 49.8 74.2 99.6 52.5 94.9
#> 1 1 66.3 96.1 99.0 49.8 74.2 99.6 52.5 94.9
#> 2 2 66.3 96.1 99.0 49.8 74.2 99.6 52.5 94.9
#> 3 3 66.3 96.1 99.0 49.8 74.2 99.6 52.5 94.9
#> 4 4 66.3 96.1 99.0 49.8 74.2 99.6 52.5 94.9
#> 5 5 60.0 93.3 98.3 38.4 68.9 99.0 43.0 92.1
#> 6 6 60.0 93.3 98.3 38.4 68.9 99.0 43.0 92.1
#> 7 7 60.0 93.3 98.3 38.4 68.9 99.0 43.0 92.1
#> 8 8 60.0 93.3 98.3 38.4 68.9 99.0 43.0 92.1
#> 9 9 60.0 93.3 98.3 38.4 68.9 99.0 43.0 92.1
#> 10 10 48.4 87.9 97.0 28.3 57.7 98.3 31.9 85.9
#> 11 11 48.4 87.9 97.0 28.3 57.7 98.3 31.9 85.9
#> 12 12 48.4 87.9 97.0 28.3 57.7 98.3 31.9 85.9
#> 13 13 48.4 87.9 97.0 28.3 57.7 98.3 31.9 85.9
#> 14 14 48.4 87.9 97.0 28.3 57.7 98.3 31.9 85.9
#> 15 15 34.1 81.8 95.1 18.0 45.5 96.5 20.1 78.7
#> 16 16 34.1 81.8 95.1 18.0 45.5 96.5 20.1 78.7
#> 17 17 34.1 81.8 95.1 18.0 45.5 96.5 20.1 78.7
#> 18 18 34.1 81.8 95.1 18.0 45.5 96.5 20.1 78.7
#> 19 19 34.1 81.8 95.1 18.0 45.5 96.5 20.1 78.7
#> 20 20 25.2 76.2 93.4 12.6 35.3 95.2 14.2 72.1
#> 21 21 25.2 76.2 93.4 12.6 35.3 95.2 14.2 72.1
#> 22 22 25.2 76.2 93.4 12.6 35.3 95.2 14.2 72.1
#> 23 23 25.2 76.2 93.4 12.6 35.3 95.2 14.2 72.1
#> 24 24 25.2 76.2 93.4 12.6 35.3 95.2 14.2 72.1
#> 25 25 17.3 65.5 88.1 7.3 24.7 91.5 8.6 60.6
#> 26 26 17.3 65.5 88.1 7.3 24.7 91.5 8.6 60.6
#> 27 27 17.3 65.5 88.1 7.3 24.7 91.5 8.6 60.6
#> 28 28 17.3 65.5 88.1 7.3 24.7 91.5 8.6 60.6
#> 29 29 17.3 65.5 88.1 7.3 24.7 91.5 8.6 60.6
#> 30 30 10.3 54.0 82.6 4.0 16.2 87.7 4.7 48.9
#> 31 31 10.3 54.0 82.6 4.0 16.2 87.7 4.7 48.9
#> 32 32 10.3 54.0 82.6 4.0 16.2 87.7 4.7 48.9
#> 33 33 10.3 54.0 82.6 4.0 16.2 87.7 4.7 48.9
#> 34 34 10.3 54.0 82.6 4.0 16.2 87.7 4.7 48.9
#> 35 35 5.8 40.7 72.9 1.9 9.4 79.7 2.3 35.5
#> 36 36 5.8 40.7 72.9 1.9 9.4 79.7 2.3 35.5
#> 37 37 5.8 40.7 72.9 1.9 9.4 79.7 2.3 35.5
#> 38 38 5.8 40.7 72.9 1.9 9.4 79.7 2.3 35.5
#> 39 39 5.8 40.7 72.9 1.9 9.4 79.7 2.3 35.5
#> 40 40 3.2 27.9 60.6 1.1 5.3 68.4 1.2 23.7
#> 41 41 3.2 27.9 60.6 1.1 5.3 68.4 1.2 23.7
#> 42 42 3.2 27.9 60.6 1.1 5.3 68.4 1.2 23.7
#> 43 43 3.2 27.9 60.6 1.1 5.3 68.4 1.2 23.7
#> 44 44 3.2 27.9 60.6 1.1 5.3 68.4 1.2 23.7
#> 45 45 1.4 17.4 46.1 0.5 2.6 54.7 0.6 14.3
#> 46 46 1.4 17.4 46.1 0.5 2.6 54.7 0.6 14.3
#> 47 47 1.4 17.4 46.1 0.5 2.6 54.7 0.6 14.3
#> 48 48 1.4 17.4 46.1 0.5 2.6 54.7 0.6 14.3
#> 49 49 1.4 17.4 46.1 0.5 2.6 54.7 0.6 14.3
#> 50 50 0.6 9.9 32.4 0.1 1.3 40.1 0.2 7.8
#> 51 51 0.6 9.9 32.4 0.1 1.3 40.1 0.2 7.8
#> 52 52 0.6 9.9 32.4 0.1 1.3 40.1 0.2 7.8
#> 53 53 0.6 9.9 32.4 0.1 1.3 40.1 0.2 7.8
#> 54 54 0.6 9.9 32.4 0.1 1.3 40.1 0.2 7.8
#> 55 55 0.2 5.2 20.7 0.0 0.5 26.9 0.1 4.1
#> 56 56 0.2 5.2 20.7 0.0 0.5 26.9 0.1 4.1
#> 57 57 0.2 5.2 20.7 0.0 0.5 26.9 0.1 4.1
#> 58 58 0.2 5.2 20.7 0.0 0.5 26.9 0.1 4.1
#> 59 59 0.2 5.2 20.7 0.0 0.5 26.9 0.1 4.1
#> 60 60 0.1 2.9 12.8 0.0 0.1 17.6 0.0 2.4
#> 61 61 0.1 2.9 12.8 0.0 0.1 17.6 0.0 2.4
#> 62 62 0.1 2.9 12.8 0.0 0.1 17.6 0.0 2.4
#> 63 63 0.1 2.9 12.8 0.0 0.1 17.6 0.0 2.4
#> 64 64 0.1 2.9 12.8 0.0 0.1 17.6 0.0 2.4
#> 65 65 0.0 1.3 6.4 0.0 0.1 9.1 0.0 1.1
#> 66 66 0.0 1.3 6.4 0.0 0.1 9.1 0.0 1.1
#> 67 67 0.0 1.3 6.4 0.0 0.1 9.1 0.0 1.1
#> 68 68 0.0 1.3 6.4 0.0 0.1 9.1 0.0 1.1
#> 69 69 0.0 1.3 6.4 0.0 0.1 9.1 0.0 1.1
#> 70 70 0.0 0.9 4.8 0.0 0.0 6.9 0.0 0.6
#> 71 71 0.0 0.9 4.8 0.0 0.0 6.9 0.0 0.6
#> 72 72 0.0 0.9 4.8 0.0 0.0 6.9 0.0 0.6
#> 73 73 0.0 0.9 4.8 0.0 0.0 6.9 0.0 0.6
#> 74 74 0.0 0.9 4.8 0.0 0.0 6.9 0.0 0.6
#> 75 75 0.0 0.4 2.5 0.0 0.0 3.7 0.0 0.4
#> 76 76 0.0 0.4 2.5 0.0 0.0 3.7 0.0 0.4
#> 77 77 0.0 0.4 2.5 0.0 0.0 3.7 0.0 0.4
#> 78 78 0.0 0.4 2.5 0.0 0.0 3.7 0.0 0.4
#> 79 79 0.0 0.4 2.5 0.0 0.0 3.7 0.0 0.4
#> 80 80 0.0 0.2 0.2 0.0 0.0 0.2 0.0 0.1
#> 81 81 0.0 0.2 0.2 0.0 0.0 0.2 0.0 0.1
#> 82 82 0.0 0.2 0.2 0.0 0.0 0.2 0.0 0.1
#> 83 83 0.0 0.2 0.2 0.0 0.0 0.2 0.0 0.1
#> 84 84 0.0 0.2 0.2 0.0 0.0 0.2 0.0 0.1
#> 85 85 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
#> 86 86 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
#> 87 87 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
#> 88 88 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
#> 89 89 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
#> 90 90 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
#> 91 91 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
#> 92 92 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
#> 93 93 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
#> 94 94 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
#> 95 95 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
#> 96 96 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
#> 97 97 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
#> 98 98 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
#> 99 99 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
#> 100 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
# Given a specific PPI score (from 0 - 100), get the row of poverty
# probabilities from PPI table it corresponds to
ppiScore <- 50
ppiIDN2012_a[ppiIDN2012_a$score == ppiScore, ]
#> score nl100 nl150 nl200 extreme ppp125 ppp250 ppp190 ppp310
#> 50 50 0.6 9.9 32.4 0.1 1.3 40.1 0.2 7.8
# Use subset() function to get the row of poverty probabilities corresponding
# to specific PPI score
ppiScore <- 50
subset(ppiIDN2012_a, score == ppiScore)
#> score nl100 nl150 nl200 extreme ppp125 ppp250 ppp190 ppp310
#> 50 50 0.6 9.9 32.4 0.1 1.3 40.1 0.2 7.8
# Given a specific PPI score (from 0 - 100), get a poverty probability
# based on a specific poverty definition. In this example, the USAID
# extreme poverty definition
ppiScore <- 50
ppiIDN2012_a[ppiIDN2012_a$score == ppiScore, "nl100"]
#> [1] 0.6