Skip to contents

Poverty Probability Index (PPI) lookup table for Indonesia using new poverty definitions

Usage

ppiIDN2012_a

Format

A data frame with 9 columns and 101 rows:

score

PPI score

nl100

National poverty line (100%)

nl150

National poverty line (150%)

nl200

National poverty line (200%)

extreme

USAID extreme poverty

ppp125

Below $1.25 per day purchasing power parity (2005)

ppp250

Below $2.50 per day purchasing power parity (2005)

ppp190

Below $1.90 per day purchasing power parity (2011)

ppp310

Below $3.10 per day purchasing power parity (2011)

Examples

  # Access Indonesia PPI table
  ppiIDN2012_a
#>     score nl100 nl150 nl200 extreme ppp125 ppp250 ppp190 ppp310
#> 0       0  66.3  96.1  99.0    49.8   74.2   99.6   52.5   94.9
#> 1       1  66.3  96.1  99.0    49.8   74.2   99.6   52.5   94.9
#> 2       2  66.3  96.1  99.0    49.8   74.2   99.6   52.5   94.9
#> 3       3  66.3  96.1  99.0    49.8   74.2   99.6   52.5   94.9
#> 4       4  66.3  96.1  99.0    49.8   74.2   99.6   52.5   94.9
#> 5       5  60.0  93.3  98.3    38.4   68.9   99.0   43.0   92.1
#> 6       6  60.0  93.3  98.3    38.4   68.9   99.0   43.0   92.1
#> 7       7  60.0  93.3  98.3    38.4   68.9   99.0   43.0   92.1
#> 8       8  60.0  93.3  98.3    38.4   68.9   99.0   43.0   92.1
#> 9       9  60.0  93.3  98.3    38.4   68.9   99.0   43.0   92.1
#> 10     10  48.4  87.9  97.0    28.3   57.7   98.3   31.9   85.9
#> 11     11  48.4  87.9  97.0    28.3   57.7   98.3   31.9   85.9
#> 12     12  48.4  87.9  97.0    28.3   57.7   98.3   31.9   85.9
#> 13     13  48.4  87.9  97.0    28.3   57.7   98.3   31.9   85.9
#> 14     14  48.4  87.9  97.0    28.3   57.7   98.3   31.9   85.9
#> 15     15  34.1  81.8  95.1    18.0   45.5   96.5   20.1   78.7
#> 16     16  34.1  81.8  95.1    18.0   45.5   96.5   20.1   78.7
#> 17     17  34.1  81.8  95.1    18.0   45.5   96.5   20.1   78.7
#> 18     18  34.1  81.8  95.1    18.0   45.5   96.5   20.1   78.7
#> 19     19  34.1  81.8  95.1    18.0   45.5   96.5   20.1   78.7
#> 20     20  25.2  76.2  93.4    12.6   35.3   95.2   14.2   72.1
#> 21     21  25.2  76.2  93.4    12.6   35.3   95.2   14.2   72.1
#> 22     22  25.2  76.2  93.4    12.6   35.3   95.2   14.2   72.1
#> 23     23  25.2  76.2  93.4    12.6   35.3   95.2   14.2   72.1
#> 24     24  25.2  76.2  93.4    12.6   35.3   95.2   14.2   72.1
#> 25     25  17.3  65.5  88.1     7.3   24.7   91.5    8.6   60.6
#> 26     26  17.3  65.5  88.1     7.3   24.7   91.5    8.6   60.6
#> 27     27  17.3  65.5  88.1     7.3   24.7   91.5    8.6   60.6
#> 28     28  17.3  65.5  88.1     7.3   24.7   91.5    8.6   60.6
#> 29     29  17.3  65.5  88.1     7.3   24.7   91.5    8.6   60.6
#> 30     30  10.3  54.0  82.6     4.0   16.2   87.7    4.7   48.9
#> 31     31  10.3  54.0  82.6     4.0   16.2   87.7    4.7   48.9
#> 32     32  10.3  54.0  82.6     4.0   16.2   87.7    4.7   48.9
#> 33     33  10.3  54.0  82.6     4.0   16.2   87.7    4.7   48.9
#> 34     34  10.3  54.0  82.6     4.0   16.2   87.7    4.7   48.9
#> 35     35   5.8  40.7  72.9     1.9    9.4   79.7    2.3   35.5
#> 36     36   5.8  40.7  72.9     1.9    9.4   79.7    2.3   35.5
#> 37     37   5.8  40.7  72.9     1.9    9.4   79.7    2.3   35.5
#> 38     38   5.8  40.7  72.9     1.9    9.4   79.7    2.3   35.5
#> 39     39   5.8  40.7  72.9     1.9    9.4   79.7    2.3   35.5
#> 40     40   3.2  27.9  60.6     1.1    5.3   68.4    1.2   23.7
#> 41     41   3.2  27.9  60.6     1.1    5.3   68.4    1.2   23.7
#> 42     42   3.2  27.9  60.6     1.1    5.3   68.4    1.2   23.7
#> 43     43   3.2  27.9  60.6     1.1    5.3   68.4    1.2   23.7
#> 44     44   3.2  27.9  60.6     1.1    5.3   68.4    1.2   23.7
#> 45     45   1.4  17.4  46.1     0.5    2.6   54.7    0.6   14.3
#> 46     46   1.4  17.4  46.1     0.5    2.6   54.7    0.6   14.3
#> 47     47   1.4  17.4  46.1     0.5    2.6   54.7    0.6   14.3
#> 48     48   1.4  17.4  46.1     0.5    2.6   54.7    0.6   14.3
#> 49     49   1.4  17.4  46.1     0.5    2.6   54.7    0.6   14.3
#> 50     50   0.6   9.9  32.4     0.1    1.3   40.1    0.2    7.8
#> 51     51   0.6   9.9  32.4     0.1    1.3   40.1    0.2    7.8
#> 52     52   0.6   9.9  32.4     0.1    1.3   40.1    0.2    7.8
#> 53     53   0.6   9.9  32.4     0.1    1.3   40.1    0.2    7.8
#> 54     54   0.6   9.9  32.4     0.1    1.3   40.1    0.2    7.8
#> 55     55   0.2   5.2  20.7     0.0    0.5   26.9    0.1    4.1
#> 56     56   0.2   5.2  20.7     0.0    0.5   26.9    0.1    4.1
#> 57     57   0.2   5.2  20.7     0.0    0.5   26.9    0.1    4.1
#> 58     58   0.2   5.2  20.7     0.0    0.5   26.9    0.1    4.1
#> 59     59   0.2   5.2  20.7     0.0    0.5   26.9    0.1    4.1
#> 60     60   0.1   2.9  12.8     0.0    0.1   17.6    0.0    2.4
#> 61     61   0.1   2.9  12.8     0.0    0.1   17.6    0.0    2.4
#> 62     62   0.1   2.9  12.8     0.0    0.1   17.6    0.0    2.4
#> 63     63   0.1   2.9  12.8     0.0    0.1   17.6    0.0    2.4
#> 64     64   0.1   2.9  12.8     0.0    0.1   17.6    0.0    2.4
#> 65     65   0.0   1.3   6.4     0.0    0.1    9.1    0.0    1.1
#> 66     66   0.0   1.3   6.4     0.0    0.1    9.1    0.0    1.1
#> 67     67   0.0   1.3   6.4     0.0    0.1    9.1    0.0    1.1
#> 68     68   0.0   1.3   6.4     0.0    0.1    9.1    0.0    1.1
#> 69     69   0.0   1.3   6.4     0.0    0.1    9.1    0.0    1.1
#> 70     70   0.0   0.9   4.8     0.0    0.0    6.9    0.0    0.6
#> 71     71   0.0   0.9   4.8     0.0    0.0    6.9    0.0    0.6
#> 72     72   0.0   0.9   4.8     0.0    0.0    6.9    0.0    0.6
#> 73     73   0.0   0.9   4.8     0.0    0.0    6.9    0.0    0.6
#> 74     74   0.0   0.9   4.8     0.0    0.0    6.9    0.0    0.6
#> 75     75   0.0   0.4   2.5     0.0    0.0    3.7    0.0    0.4
#> 76     76   0.0   0.4   2.5     0.0    0.0    3.7    0.0    0.4
#> 77     77   0.0   0.4   2.5     0.0    0.0    3.7    0.0    0.4
#> 78     78   0.0   0.4   2.5     0.0    0.0    3.7    0.0    0.4
#> 79     79   0.0   0.4   2.5     0.0    0.0    3.7    0.0    0.4
#> 80     80   0.0   0.2   0.2     0.0    0.0    0.2    0.0    0.1
#> 81     81   0.0   0.2   0.2     0.0    0.0    0.2    0.0    0.1
#> 82     82   0.0   0.2   0.2     0.0    0.0    0.2    0.0    0.1
#> 83     83   0.0   0.2   0.2     0.0    0.0    0.2    0.0    0.1
#> 84     84   0.0   0.2   0.2     0.0    0.0    0.2    0.0    0.1
#> 85     85   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 86     86   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 87     87   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 88     88   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 89     89   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 90     90   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 91     91   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 92     92   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 93     93   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 94     94   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 95     95   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 96     96   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 97     97   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 98     98   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 99     99   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 100   100   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0

  # Given a specific PPI score (from 0 - 100), get the row of poverty
  # probabilities from PPI table it corresponds to
  ppiScore <- 50
  ppiIDN2012_a[ppiIDN2012_a$score == ppiScore, ]
#>    score nl100 nl150 nl200 extreme ppp125 ppp250 ppp190 ppp310
#> 50    50   0.6   9.9  32.4     0.1    1.3   40.1    0.2    7.8

  # Use subset() function to get the row of poverty probabilities corresponding
  # to specific PPI score
  ppiScore <- 50
  subset(ppiIDN2012_a, score == ppiScore)
#>    score nl100 nl150 nl200 extreme ppp125 ppp250 ppp190 ppp310
#> 50    50   0.6   9.9  32.4     0.1    1.3   40.1    0.2    7.8

  # Given a specific PPI score (from 0 - 100), get a poverty probability
  # based on a specific poverty definition. In this example, the USAID
  # extreme poverty definition
  ppiScore <- 50
  ppiIDN2012_a[ppiIDN2012_a$score == ppiScore, "nl100"]
#> [1] 0.6