Skip to contents

Poverty Probability Index (PPI) lookup table for Indonesia using legacy poverty definitions

Usage

ppiIDN2012

Format

A data frame with 4 columns and 101 rows:

score

PPI score

nl100

National poverty line (100%)

ppp125

Below $1.25 per day purchasing power parity (2005)

ppp250

Below $2.50 per day purchasing power parity (2005)

Examples

  # Access Indonesia PPI table
  ppiIDN2012
#>     score nl100 ppp125 ppp250
#> 0       0  53.5   77.4   99.5
#> 1       1  53.5   77.4   99.5
#> 2       2  53.5   77.4   99.5
#> 3       3  53.5   77.4   99.5
#> 4       4  53.5   77.4   99.5
#> 5       5  44.3   72.1   99.0
#> 6       6  44.3   72.1   99.0
#> 7       7  44.3   72.1   99.0
#> 8       8  44.3   72.1   99.0
#> 9       9  44.3   72.1   99.0
#> 10     10  33.9   61.8   98.5
#> 11     11  33.9   61.8   98.5
#> 12     12  33.9   61.8   98.5
#> 13     13  33.9   61.8   98.5
#> 14     14  33.9   61.8   98.5
#> 15     15  22.3   49.9   97.0
#> 16     16  22.3   49.9   97.0
#> 17     17  22.3   49.9   97.0
#> 18     18  22.3   49.9   97.0
#> 19     19  22.3   49.9   97.0
#> 20     20  15.6   40.1   95.6
#> 21     21  15.6   40.1   95.6
#> 22     22  15.6   40.1   95.6
#> 23     23  15.6   40.1   95.6
#> 24     24  15.6   40.1   95.6
#> 25     25   9.6   28.8   92.0
#> 26     26   9.6   28.8   92.0
#> 27     27   9.6   28.8   92.0
#> 28     28   9.6   28.8   92.0
#> 29     29   9.6   28.8   92.0
#> 30     30   5.3   19.7   88.2
#> 31     31   5.3   19.7   88.2
#> 32     32   5.3   19.7   88.2
#> 33     33   5.3   19.7   88.2
#> 34     34   5.3   19.7   88.2
#> 35     35   2.6   12.0   80.8
#> 36     36   2.6   12.0   80.8
#> 37     37   2.6   12.0   80.8
#> 38     38   2.6   12.0   80.8
#> 39     39   2.6   12.0   80.8
#> 40     40   1.4    6.8   69.6
#> 41     41   1.4    6.8   69.6
#> 42     42   1.4    6.8   69.6
#> 43     43   1.4    6.8   69.6
#> 44     44   1.4    6.8   69.6
#> 45     45   0.7    3.5   56.2
#> 46     46   0.7    3.5   56.2
#> 47     47   0.7    3.5   56.2
#> 48     48   0.7    3.5   56.2
#> 49     49   0.7    3.5   56.2
#> 50     50   0.3    1.7   42.0
#> 51     51   0.3    1.7   42.0
#> 52     52   0.3    1.7   42.0
#> 53     53   0.3    1.7   42.0
#> 54     54   0.3    1.7   42.0
#> 55     55   0.1    0.9   28.3
#> 56     56   0.1    0.9   28.3
#> 57     57   0.1    0.9   28.3
#> 58     58   0.1    0.9   28.3
#> 59     59   0.1    0.9   28.3
#> 60     60   0.1    0.4   19.4
#> 61     61   0.1    0.4   19.4
#> 62     62   0.1    0.4   19.4
#> 63     63   0.1    0.4   19.4
#> 64     64   0.1    0.4   19.4
#> 65     65   0.0    0.1   10.7
#> 66     66   0.0    0.1   10.7
#> 67     67   0.0    0.1   10.7
#> 68     68   0.0    0.1   10.7
#> 69     69   0.0    0.1   10.7
#> 70     70   0.0    0.1    8.1
#> 71     71   0.0    0.1    8.1
#> 72     72   0.0    0.1    8.1
#> 73     73   0.0    0.1    8.1
#> 74     74   0.0    0.1    8.1
#> 75     75   0.0    0.1    4.0
#> 76     76   0.0    0.1    4.0
#> 77     77   0.0    0.1    4.0
#> 78     78   0.0    0.1    4.0
#> 79     79   0.0    0.1    4.0
#> 80     80   0.0    0.0    1.3
#> 81     81   0.0    0.0    1.3
#> 82     82   0.0    0.0    1.3
#> 83     83   0.0    0.0    1.3
#> 84     84   0.0    0.0    1.3
#> 85     85   0.0    0.0    0.0
#> 86     86   0.0    0.0    0.0
#> 87     87   0.0    0.0    0.0
#> 88     88   0.0    0.0    0.0
#> 89     89   0.0    0.0    0.0
#> 90     90   0.0    0.0    0.0
#> 91     91   0.0    0.0    0.0
#> 92     92   0.0    0.0    0.0
#> 93     93   0.0    0.0    0.0
#> 94     94   0.0    0.0    0.0
#> 95     95   0.0    0.0    0.0
#> 96     96   0.0    0.0    0.0
#> 97     97   0.0    0.0    0.0
#> 98     98   0.0    0.0    0.0
#> 99     99   0.0    0.0    0.0
#> 100   100   0.0    0.0    0.0

  # Given a specific PPI score (from 0 - 100), get the row of poverty
  # probabilities from PPI table it corresponds to
  ppiScore <- 50
  ppiIDN2012[ppiIDN2012$score == ppiScore, ]
#>    score nl100 ppp125 ppp250
#> 50    50   0.3    1.7     42

  # Use subset() function to get the row of poverty probabilities corresponding
  # to specific PPI score
  ppiScore <- 50
  subset(ppiIDN2012, score == ppiScore)
#>    score nl100 ppp125 ppp250
#> 50    50   0.3    1.7     42

  # Given a specific PPI score (from 0 - 100), get a poverty probability
  # based on a specific poverty definition. In this example, the national
  # poverty line definition
  ppiScore <- 50
  ppiIDN2012[ppiIDN2012$score == ppiScore, "nl100"]
#> [1] 0.3