Skip to contents

Poverty Probability Index (PPI) lookup table for Haiti

Usage

ppiHTI2016

Format

A data frame with 10 columns and 101 rows:

score

PPI score

nlFood

Food poverty line

nl100

National poverty line (100%)

nl150

National poverty line (150%)

nl200

National poverty line (200%)

half100

Poorest half below 100% national

ppp125

Below $1.25 per day purchasing power parity (2005)

ppp200

Below $2.00 per day purchasing power parity (2005)

ppp250

Below $2.50 per day purchasing power parity (2005)

ppp500

Below $5.00 per day purchasing power parity (2005)

Examples

  # Access Haiti PPI table
  ppiHTI2016
#>     score nlFood nl100 nl150 nl200 half100 ppp125 ppp200 ppp250 ppp500
#> 0       0  100.0 100.0 100.0 100.0   100.0  100.0  100.0  100.0  100.0
#> 1       1  100.0 100.0 100.0 100.0   100.0  100.0  100.0  100.0  100.0
#> 2       2  100.0 100.0 100.0 100.0   100.0  100.0  100.0  100.0  100.0
#> 3       3  100.0 100.0 100.0 100.0   100.0  100.0  100.0  100.0  100.0
#> 4       4  100.0 100.0 100.0 100.0   100.0  100.0  100.0  100.0  100.0
#> 5       5   87.4 100.0 100.0 100.0    83.7   87.4  100.0  100.0  100.0
#> 6       6   87.4 100.0 100.0 100.0    83.7   87.4  100.0  100.0  100.0
#> 7       7   87.4 100.0 100.0 100.0    83.7   87.4  100.0  100.0  100.0
#> 8       8   87.4 100.0 100.0 100.0    83.7   87.4  100.0  100.0  100.0
#> 9       9   87.4 100.0 100.0 100.0    83.7   87.4  100.0  100.0  100.0
#> 10     10   83.8  97.3  99.7 100.0    83.3   85.5   97.3   97.3  100.0
#> 11     11   83.8  97.3  99.7 100.0    83.3   85.5   97.3   97.3  100.0
#> 12     12   83.8  97.3  99.7 100.0    83.3   85.5   97.3   97.3  100.0
#> 13     13   83.8  97.3  99.7 100.0    83.3   85.5   97.3   97.3  100.0
#> 14     14   83.8  97.3  99.7 100.0    83.3   85.5   97.3   97.3  100.0
#> 15     15   62.9  95.8  99.4 100.0    69.9   70.3   93.8   96.8  100.0
#> 16     16   62.9  95.8  99.4 100.0    69.9   70.3   93.8   96.8  100.0
#> 17     17   62.9  95.8  99.4 100.0    69.9   70.3   93.8   96.8  100.0
#> 18     18   62.9  95.8  99.4 100.0    69.9   70.3   93.8   96.8  100.0
#> 19     19   62.9  95.8  99.4 100.0    69.9   70.3   93.8   96.8  100.0
#> 20     20   56.5  94.4  99.4  99.8    61.6   61.4   88.4   96.6   99.8
#> 21     21   56.5  94.4  99.4  99.8    61.6   61.4   88.4   96.6   99.8
#> 22     22   56.5  94.4  99.4  99.8    61.6   61.4   88.4   96.6   99.8
#> 23     23   56.5  94.4  99.4  99.8    61.6   61.4   88.4   96.6   99.8
#> 24     24   56.5  94.4  99.4  99.8    61.6   61.4   88.4   96.6   99.8
#> 25     25   51.5  94.0  98.8  99.6    55.2   54.0   87.9   96.6   99.6
#> 26     26   51.5  94.0  98.8  99.6    55.2   54.0   87.9   96.6   99.6
#> 27     27   51.5  94.0  98.8  99.6    55.2   54.0   87.9   96.6   99.6
#> 28     28   51.5  94.0  98.8  99.6    55.2   54.0   87.9   96.6   99.6
#> 29     29   51.5  94.0  98.8  99.6    55.2   54.0   87.9   96.6   99.6
#> 30     30   32.8  83.6  95.5  98.7    38.8   35.6   72.0   86.8   99.1
#> 31     31   32.8  83.6  95.5  98.7    38.8   35.6   72.0   86.8   99.1
#> 32     32   32.8  83.6  95.5  98.7    38.8   35.6   72.0   86.8   99.1
#> 33     33   32.8  83.6  95.5  98.7    38.8   35.6   72.0   86.8   99.1
#> 34     34   32.8  83.6  95.5  98.7    38.8   35.6   72.0   86.8   99.1
#> 35     35   22.0  76.5  93.8  98.1    32.3   27.3   62.0   79.8   99.1
#> 36     36   22.0  76.5  93.8  98.1    32.3   27.3   62.0   79.8   99.1
#> 37     37   22.0  76.5  93.8  98.1    32.3   27.3   62.0   79.8   99.1
#> 38     38   22.0  76.5  93.8  98.1    32.3   27.3   62.0   79.8   99.1
#> 39     39   22.0  76.5  93.8  98.1    32.3   27.3   62.0   79.8   99.1
#> 40     40   13.7  62.7  90.7  96.3    20.2   15.9   47.6   69.7   97.9
#> 41     41   13.7  62.7  90.7  96.3    20.2   15.9   47.6   69.7   97.9
#> 42     42   13.7  62.7  90.7  96.3    20.2   15.9   47.6   69.7   97.9
#> 43     43   13.7  62.7  90.7  96.3    20.2   15.9   47.6   69.7   97.9
#> 44     44   13.7  62.7  90.7  96.3    20.2   15.9   47.6   69.7   97.9
#> 45     45    7.9  44.8  77.2  90.0    15.0   10.4   30.8   49.6   92.8
#> 46     46    7.9  44.8  77.2  90.0    15.0   10.4   30.8   49.6   92.8
#> 47     47    7.9  44.8  77.2  90.0    15.0   10.4   30.8   49.6   92.8
#> 48     48    7.9  44.8  77.2  90.0    15.0   10.4   30.8   49.6   92.8
#> 49     49    7.9  44.8  77.2  90.0    15.0   10.4   30.8   49.6   92.8
#> 50     50    5.3  40.1  72.3  89.4    12.6    6.6   26.4   47.6   89.6
#> 51     51    5.3  40.1  72.3  89.4    12.6    6.6   26.4   47.6   89.6
#> 52     52    5.3  40.1  72.3  89.4    12.6    6.6   26.4   47.6   89.6
#> 53     53    5.3  40.1  72.3  89.4    12.6    6.6   26.4   47.6   89.6
#> 54     54    5.3  40.1  72.3  89.4    12.6    6.6   26.4   47.6   89.6
#> 55     55    1.6  27.7  65.8  80.7     7.5    2.2   19.3   31.6   82.8
#> 56     56    1.6  27.7  65.8  80.7     7.5    2.2   19.3   31.6   82.8
#> 57     57    1.6  27.7  65.8  80.7     7.5    2.2   19.3   31.6   82.8
#> 58     58    1.6  27.7  65.8  80.7     7.5    2.2   19.3   31.6   82.8
#> 59     59    1.6  27.7  65.8  80.7     7.5    2.2   19.3   31.6   82.8
#> 60     60    0.5  16.4  48.8  71.9     2.9    1.0    8.1   20.1   74.3
#> 61     61    0.5  16.4  48.8  71.9     2.9    1.0    8.1   20.1   74.3
#> 62     62    0.5  16.4  48.8  71.9     2.9    1.0    8.1   20.1   74.3
#> 63     63    0.5  16.4  48.8  71.9     2.9    1.0    8.1   20.1   74.3
#> 64     64    0.5  16.4  48.8  71.9     2.9    1.0    8.1   20.1   74.3
#> 65     65    0.0   8.8  28.4  54.4     1.8    0.0    4.9   11.6   60.3
#> 66     66    0.0   8.8  28.4  54.4     1.8    0.0    4.9   11.6   60.3
#> 67     67    0.0   8.8  28.4  54.4     1.8    0.0    4.9   11.6   60.3
#> 68     68    0.0   8.8  28.4  54.4     1.8    0.0    4.9   11.6   60.3
#> 69     69    0.0   8.8  28.4  54.4     1.8    0.0    4.9   11.6   60.3
#> 70     70    0.0   4.7  16.5  42.8     1.8    0.0    1.9    5.2   47.8
#> 71     71    0.0   4.7  16.5  42.8     1.8    0.0    1.9    5.2   47.8
#> 72     72    0.0   4.7  16.5  42.8     1.8    0.0    1.9    5.2   47.8
#> 73     73    0.0   4.7  16.5  42.8     1.8    0.0    1.9    5.2   47.8
#> 74     74    0.0   4.7  16.5  42.8     1.8    0.0    1.9    5.2   47.8
#> 75     75    0.0   2.2  11.8  35.5     0.2    0.0    1.8    2.2   38.8
#> 76     76    0.0   2.2  11.8  35.5     0.2    0.0    1.8    2.2   38.8
#> 77     77    0.0   2.2  11.8  35.5     0.2    0.0    1.8    2.2   38.8
#> 78     78    0.0   2.2  11.8  35.5     0.2    0.0    1.8    2.2   38.8
#> 79     79    0.0   2.2  11.8  35.5     0.2    0.0    1.8    2.2   38.8
#> 80     80    0.0   0.0   8.0  17.5     0.0    0.0    0.0    0.0   22.7
#> 81     81    0.0   0.0   8.0  17.5     0.0    0.0    0.0    0.0   22.7
#> 82     82    0.0   0.0   8.0  17.5     0.0    0.0    0.0    0.0   22.7
#> 83     83    0.0   0.0   8.0  17.5     0.0    0.0    0.0    0.0   22.7
#> 84     84    0.0   0.0   8.0  17.5     0.0    0.0    0.0    0.0   22.7
#> 85     85    0.0   0.0   3.1   6.2     0.0    0.0    0.0    0.0   10.6
#> 86     86    0.0   0.0   3.1   6.2     0.0    0.0    0.0    0.0   10.6
#> 87     87    0.0   0.0   3.1   6.2     0.0    0.0    0.0    0.0   10.6
#> 88     88    0.0   0.0   3.1   6.2     0.0    0.0    0.0    0.0   10.6
#> 89     89    0.0   0.0   3.1   6.2     0.0    0.0    0.0    0.0   10.6
#> 90     90    0.0   0.0   0.0   5.5     0.0    0.0    0.0    0.0    7.0
#> 91     91    0.0   0.0   0.0   5.5     0.0    0.0    0.0    0.0    7.0
#> 92     92    0.0   0.0   0.0   5.5     0.0    0.0    0.0    0.0    7.0
#> 93     93    0.0   0.0   0.0   5.5     0.0    0.0    0.0    0.0    7.0
#> 94     94    0.0   0.0   0.0   5.5     0.0    0.0    0.0    0.0    7.0
#> 95     95    0.0   0.0   0.0   5.5     0.0    0.0    0.0    0.0    7.0
#> 96     96    0.0   0.0   0.0   5.5     0.0    0.0    0.0    0.0    7.0
#> 97     97    0.0   0.0   0.0   5.5     0.0    0.0    0.0    0.0    7.0
#> 98     98    0.0   0.0   0.0   5.5     0.0    0.0    0.0    0.0    7.0
#> 99     99    0.0   0.0   0.0   5.5     0.0    0.0    0.0    0.0    7.0
#> 100   100    0.0   0.0   0.0   5.5     0.0    0.0    0.0    0.0    7.0

  # Given a specific PPI score (from 0 - 100), get the row of poverty
  # probabilities from PPI table it corresponds to
  ppiScore <- 50
  ppiHTI2016[ppiHTI2016$score == ppiScore, ]
#>    score nlFood nl100 nl150 nl200 half100 ppp125 ppp200 ppp250 ppp500
#> 50    50    5.3  40.1  72.3  89.4    12.6    6.6   26.4   47.6   89.6

  # Use subset() function to get the row of poverty probabilities corresponding
  # to specific PPI score
  ppiScore <- 50
  subset(ppiHTI2016, score == ppiScore)
#>    score nlFood nl100 nl150 nl200 half100 ppp125 ppp200 ppp250 ppp500
#> 50    50    5.3  40.1  72.3  89.4    12.6    6.6   26.4   47.6   89.6

  # Given a specific PPI score (from 0 - 100), get a poverty probability
  # based on a specific poverty definition. In this example, the national
  # poverty line definition
  ppiScore <- 50
  ppiHTI2016[ppiHTI2016$score == ppiScore, "nl100"]
#> [1] 40.1