Skip to contents

Poverty Probability Index (PPI) lookup table for Egypt

Usage

ppiEGY2010

Format

A data frame with 8 columns and 101 rows:

score

PPI score

nu100

National upper poverty line (100%)

nl100

National lower poverty line (100%)

nlFood

Food poverty line

extreme

USAID extreme poverty

ppp125

Below $1.25 per day purchasing power parity (2005)

ppp250

Below $2.50 per day purchasing power parity (2005)

ppp375

Below $3.75 per day purchasing power parity (2005)

Examples

  # Access Egypt PPI table
  ppiEGY2010
#>     score nu100 nl100 nlFood extreme ppp125 ppp250 ppp375
#> 0       0 100.0 100.0   34.3   100.0    0.0  100.0  100.0
#> 1       1 100.0 100.0   34.3   100.0    0.0  100.0  100.0
#> 2       2 100.0 100.0   34.3   100.0    0.0  100.0  100.0
#> 3       3 100.0 100.0   34.3   100.0    0.0  100.0  100.0
#> 4       4 100.0 100.0   34.3   100.0    0.0  100.0  100.0
#> 5       5 100.0 100.0   66.6    91.9   66.3  100.0  100.0
#> 6       6 100.0 100.0   66.6    91.9   66.3  100.0  100.0
#> 7       7 100.0 100.0   66.6    91.9   66.3  100.0  100.0
#> 8       8 100.0 100.0   66.6    91.9   66.3  100.0  100.0
#> 9       9 100.0 100.0   66.6    91.9   66.3  100.0  100.0
#> 10     10 100.0  82.7   34.4    85.7   24.1  100.0  100.0
#> 11     11 100.0  82.7   34.4    85.7   24.1  100.0  100.0
#> 12     12 100.0  82.7   34.4    85.7   24.1  100.0  100.0
#> 13     13 100.0  82.7   34.4    85.7   24.1  100.0  100.0
#> 14     14 100.0  82.7   34.4    85.7   24.1  100.0  100.0
#> 15     15  91.9  60.5   22.6    61.7   13.0   86.6   98.2
#> 16     16  91.9  60.5   22.6    61.7   13.0   86.6   98.2
#> 17     17  91.9  60.5   22.6    61.7   13.0   86.6   98.2
#> 18     18  91.9  60.5   22.6    61.7   13.0   86.6   98.2
#> 19     19  91.9  60.5   22.6    61.7   13.0   86.6   98.2
#> 20     20  86.5  58.6   16.1    56.4    6.5   86.5   99.3
#> 21     21  86.5  58.6   16.1    56.4    6.5   86.5   99.3
#> 22     22  86.5  58.6   16.1    56.4    6.5   86.5   99.3
#> 23     23  86.5  58.6   16.1    56.4    6.5   86.5   99.3
#> 24     24  86.5  58.6   16.1    56.4    6.5   86.5   99.3
#> 25     25  76.8  45.8    7.5    45.6    5.0   74.1   97.1
#> 26     26  76.8  45.8    7.5    45.6    5.0   74.1   97.1
#> 27     27  76.8  45.8    7.5    45.6    5.0   74.1   97.1
#> 28     28  76.8  45.8    7.5    45.6    5.0   74.1   97.1
#> 29     29  76.8  45.8    7.5    45.6    5.0   74.1   97.1
#> 30     30  65.2  32.2    4.5    30.3    2.1   62.8   94.4
#> 31     31  65.2  32.2    4.5    30.3    2.1   62.8   94.4
#> 32     32  65.2  32.2    4.5    30.3    2.1   62.8   94.4
#> 33     33  65.2  32.2    4.5    30.3    2.1   62.8   94.4
#> 34     34  65.2  32.2    4.5    30.3    2.1   62.8   94.4
#> 35     35  50.9  19.4    2.2    20.9    1.4   48.1   89.9
#> 36     36  50.9  19.4    2.2    20.9    1.4   48.1   89.9
#> 37     37  50.9  19.4    2.2    20.9    1.4   48.1   89.9
#> 38     38  50.9  19.4    2.2    20.9    1.4   48.1   89.9
#> 39     39  50.9  19.4    2.2    20.9    1.4   48.1   89.9
#> 40     40  44.6  14.3    1.4    16.1    0.3   43.2   87.3
#> 41     41  44.6  14.3    1.4    16.1    0.3   43.2   87.3
#> 42     42  44.6  14.3    1.4    16.1    0.3   43.2   87.3
#> 43     43  44.6  14.3    1.4    16.1    0.3   43.2   87.3
#> 44     44  44.6  14.3    1.4    16.1    0.3   43.2   87.3
#> 45     45  37.1  11.8    2.0    12.1    1.7   35.3   83.4
#> 46     46  37.1  11.8    2.0    12.1    1.7   35.3   83.4
#> 47     47  37.1  11.8    2.0    12.1    1.7   35.3   83.4
#> 48     48  37.1  11.8    2.0    12.1    1.7   35.3   83.4
#> 49     49  37.1  11.8    2.0    12.1    1.7   35.3   83.4
#> 50     50  26.9   9.5    1.0    11.2    0.0   25.3   75.1
#> 51     51  26.9   9.5    1.0    11.2    0.0   25.3   75.1
#> 52     52  26.9   9.5    1.0    11.2    0.0   25.3   75.1
#> 53     53  26.9   9.5    1.0    11.2    0.0   25.3   75.1
#> 54     54  26.9   9.5    1.0    11.2    0.0   25.3   75.1
#> 55     55  17.6   3.6    0.0     6.3    0.0   15.4   58.7
#> 56     56  17.6   3.6    0.0     6.3    0.0   15.4   58.7
#> 57     57  17.6   3.6    0.0     6.3    0.0   15.4   58.7
#> 58     58  17.6   3.6    0.0     6.3    0.0   15.4   58.7
#> 59     59  17.6   3.6    0.0     6.3    0.0   15.4   58.7
#> 60     60   9.9   1.8    0.5     2.8    0.3    8.9   50.3
#> 61     61   9.9   1.8    0.5     2.8    0.3    8.9   50.3
#> 62     62   9.9   1.8    0.5     2.8    0.3    8.9   50.3
#> 63     63   9.9   1.8    0.5     2.8    0.3    8.9   50.3
#> 64     64   9.9   1.8    0.5     2.8    0.3    8.9   50.3
#> 65     65   8.3   2.4    0.4     1.2    0.0    7.6   36.0
#> 66     66   8.3   2.4    0.4     1.2    0.0    7.6   36.0
#> 67     67   8.3   2.4    0.4     1.2    0.0    7.6   36.0
#> 68     68   8.3   2.4    0.4     1.2    0.0    7.6   36.0
#> 69     69   8.3   2.4    0.4     1.2    0.0    7.6   36.0
#> 70     70   3.6   0.0    0.0     1.0    0.0    2.5   21.4
#> 71     71   3.6   0.0    0.0     1.0    0.0    2.5   21.4
#> 72     72   3.6   0.0    0.0     1.0    0.0    2.5   21.4
#> 73     73   3.6   0.0    0.0     1.0    0.0    2.5   21.4
#> 74     74   3.6   0.0    0.0     1.0    0.0    2.5   21.4
#> 75     75   1.6   0.0    0.0     0.0    0.0    1.6    8.2
#> 76     76   1.6   0.0    0.0     0.0    0.0    1.6    8.2
#> 77     77   1.6   0.0    0.0     0.0    0.0    1.6    8.2
#> 78     78   1.6   0.0    0.0     0.0    0.0    1.6    8.2
#> 79     79   1.6   0.0    0.0     0.0    0.0    1.6    8.2
#> 80     80   0.7   0.7    0.0     0.7    0.0    0.7   10.6
#> 81     81   0.7   0.7    0.0     0.7    0.0    0.7   10.6
#> 82     82   0.7   0.7    0.0     0.7    0.0    0.7   10.6
#> 83     83   0.7   0.7    0.0     0.7    0.0    0.7   10.6
#> 84     84   0.7   0.7    0.0     0.7    0.0    0.7   10.6
#> 85     85   0.0   0.0    0.0     0.0    0.0    0.0    5.0
#> 86     86   0.0   0.0    0.0     0.0    0.0    0.0    5.0
#> 87     87   0.0   0.0    0.0     0.0    0.0    0.0    5.0
#> 88     88   0.0   0.0    0.0     0.0    0.0    0.0    5.0
#> 89     89   0.0   0.0    0.0     0.0    0.0    0.0    5.0
#> 90     90   0.0   0.0    0.0     0.0    0.0    0.0    2.2
#> 91     91   0.0   0.0    0.0     0.0    0.0    0.0    2.2
#> 92     92   0.0   0.0    0.0     0.0    0.0    0.0    2.2
#> 93     93   0.0   0.0    0.0     0.0    0.0    0.0    2.2
#> 94     94   0.0   0.0    0.0     0.0    0.0    0.0    2.2
#> 95     95   0.0   0.0    0.0     0.0    0.0    0.0    0.0
#> 96     96   0.0   0.0    0.0     0.0    0.0    0.0    0.0
#> 97     97   0.0   0.0    0.0     0.0    0.0    0.0    0.0
#> 98     98   0.0   0.0    0.0     0.0    0.0    0.0    0.0
#> 99     99   0.0   0.0    0.0     0.0    0.0    0.0    0.0
#> 100   100   0.0   0.0    0.0     0.0    0.0    0.0    0.0

  # Given a specific PPI score (from 0 - 100), get the row of poverty
  # probabilities from PPI table it corresponds to
  ppiScore <- 50
  ppiEGY2010[ppiEGY2010$score == ppiScore, ]
#>    score nu100 nl100 nlFood extreme ppp125 ppp250 ppp375
#> 50    50  26.9   9.5      1    11.2      0   25.3   75.1

  # Use subset() function to get the row of poverty probabilities corresponding
  # to specific PPI score
  ppiScore <- 50
  subset(ppiEGY2010, score == ppiScore)
#>    score nu100 nl100 nlFood extreme ppp125 ppp250 ppp375
#> 50    50  26.9   9.5      1    11.2      0   25.3   75.1

  # Given a specific PPI score (from 0 - 100), get a poverty probability
  # based on a specific poverty definition. In this example, the USAID
  # extreme poverty definition
  ppiScore <- 50
  ppiEGY2010[ppiEGY2010$score == ppiScore, "extreme"]
#> [1] 11.2