Poverty Probability Index (PPI) lookup table for Ecuador for 2022
Source:R/00_ecuador.R
ppiECU2022.Rd
Poverty Probability Index (PPI) lookup table for Ecuador for 2022
Format
A data frame with 20 columns and 101 rows:
score
PPI score
nl100
National poverty line (100%)
nl_extreme
National poverty line (extreme)
nl150
National poverty line (150%)
nl200
National poverty line (200%)
ppp215
Below $2.15 per day purchasing power parity (2017)
ppp365
Below $3.65 per day purchasing power parity (2017)
ppp685
Below $6.85 per day purchasing power parity (2017)
ppp100
Below $1.00 per day purchasing power parity (2011)
ppp190
Below $1.90 per day purchasing power parity (2011)
ppp320
Below $3.20 per day purchasing power parity (2011)
ppp550
Below $5.50 per day purchasing power parity (2011)
ppp800
Below $8.00 per day purchasing power parity (2011)
ppp1100
Below $11.00 per day purchasing power parity (2011)
ppp1500
Below $15.00 per day purchasing power parity (2011)
ppp2170
Below $21.70 per day purchasing power parity (2011)
percentile20
Below 20th percentile poverty line
percentile40
Below 40th percentile poverty line
percentile60
Below 60th percentile poverty line
percentile80
Below 80th percentile poverty line
Examples
# Access Ecuador PPI table
ppiECU2015
#> score nlFood nl100 nl150 nl200 half100 ppp125 ppp200 ppp250 ppp500 ppp844
#> 0 0 85.6 99.8 100.0 100.0 92.0 34.7 84.7 96.8 100.0 100.0
#> 1 1 85.6 99.8 100.0 100.0 92.0 34.7 84.7 96.8 100.0 100.0
#> 2 2 85.6 99.8 100.0 100.0 92.0 34.7 84.7 96.8 100.0 100.0
#> 3 3 85.6 99.8 100.0 100.0 92.0 34.7 84.7 96.8 100.0 100.0
#> 4 4 85.6 99.8 100.0 100.0 92.0 34.7 84.7 96.8 100.0 100.0
#> 5 5 68.7 98.3 100.0 100.0 80.3 25.9 67.5 81.2 100.0 100.0
#> 6 6 68.7 98.3 100.0 100.0 80.3 25.9 67.5 81.2 100.0 100.0
#> 7 7 68.7 98.3 100.0 100.0 80.3 25.9 67.5 81.2 100.0 100.0
#> 8 8 68.7 98.3 100.0 100.0 80.3 25.9 67.5 81.2 100.0 100.0
#> 9 9 68.7 98.3 100.0 100.0 80.3 25.9 67.5 81.2 100.0 100.0
#> 10 10 59.2 95.1 100.0 100.0 76.8 17.9 57.3 71.5 99.9 100.0
#> 11 11 59.2 95.1 100.0 100.0 76.8 17.9 57.3 71.5 99.9 100.0
#> 12 12 59.2 95.1 100.0 100.0 76.8 17.9 57.3 71.5 99.9 100.0
#> 13 13 59.2 95.1 100.0 100.0 76.8 17.9 57.3 71.5 99.9 100.0
#> 14 14 59.2 95.1 100.0 100.0 76.8 17.9 57.3 71.5 99.9 100.0
#> 15 15 37.8 93.0 99.7 100.0 70.3 9.0 36.6 64.3 99.0 100.0
#> 16 16 37.8 93.0 99.7 100.0 70.3 9.0 36.6 64.3 99.0 100.0
#> 17 17 37.8 93.0 99.7 100.0 70.3 9.0 36.6 64.3 99.0 100.0
#> 18 18 37.8 93.0 99.7 100.0 70.3 9.0 36.6 64.3 99.0 100.0
#> 19 19 37.8 93.0 99.7 100.0 70.3 9.0 36.6 64.3 99.0 100.0
#> 20 20 25.1 84.7 98.2 100.0 58.9 3.7 23.9 51.6 96.3 100.0
#> 21 21 25.1 84.7 98.2 100.0 58.9 3.7 23.9 51.6 96.3 100.0
#> 22 22 25.1 84.7 98.2 100.0 58.9 3.7 23.9 51.6 96.3 100.0
#> 23 23 25.1 84.7 98.2 100.0 58.9 3.7 23.9 51.6 96.3 100.0
#> 24 24 25.1 84.7 98.2 100.0 58.9 3.7 23.9 51.6 96.3 100.0
#> 25 25 16.6 74.2 97.1 99.7 41.7 1.8 16.2 34.3 95.0 99.9
#> 26 26 16.6 74.2 97.1 99.7 41.7 1.8 16.2 34.3 95.0 99.9
#> 27 27 16.6 74.2 97.1 99.7 41.7 1.8 16.2 34.3 95.0 99.9
#> 28 28 16.6 74.2 97.1 99.7 41.7 1.8 16.2 34.3 95.0 99.9
#> 29 29 16.6 74.2 97.1 99.7 41.7 1.8 16.2 34.3 95.0 99.9
#> 30 30 8.8 64.1 93.7 98.9 27.8 0.8 8.0 23.0 89.1 99.5
#> 31 31 8.8 64.1 93.7 98.9 27.8 0.8 8.0 23.0 89.1 99.5
#> 32 32 8.8 64.1 93.7 98.9 27.8 0.8 8.0 23.0 89.1 99.5
#> 33 33 8.8 64.1 93.7 98.9 27.8 0.8 8.0 23.0 89.1 99.5
#> 34 34 8.8 64.1 93.7 98.9 27.8 0.8 8.0 23.0 89.1 99.5
#> 35 35 6.0 50.0 88.9 98.2 20.1 0.4 5.6 15.1 83.5 99.3
#> 36 36 6.0 50.0 88.9 98.2 20.1 0.4 5.6 15.1 83.5 99.3
#> 37 37 6.0 50.0 88.9 98.2 20.1 0.4 5.6 15.1 83.5 99.3
#> 38 38 6.0 50.0 88.9 98.2 20.1 0.4 5.6 15.1 83.5 99.3
#> 39 39 6.0 50.0 88.9 98.2 20.1 0.4 5.6 15.1 83.5 99.3
#> 40 40 4.3 36.6 80.5 95.0 11.5 0.2 3.8 10.3 73.8 98.1
#> 41 41 4.3 36.6 80.5 95.0 11.5 0.2 3.8 10.3 73.8 98.1
#> 42 42 4.3 36.6 80.5 95.0 11.5 0.2 3.8 10.3 73.8 98.1
#> 43 43 4.3 36.6 80.5 95.0 11.5 0.2 3.8 10.3 73.8 98.1
#> 44 44 4.3 36.6 80.5 95.0 11.5 0.2 3.8 10.3 73.8 98.1
#> 45 45 2.1 24.6 65.2 87.8 8.1 0.2 2.0 6.1 57.7 93.7
#> 46 46 2.1 24.6 65.2 87.8 8.1 0.2 2.0 6.1 57.7 93.7
#> 47 47 2.1 24.6 65.2 87.8 8.1 0.2 2.0 6.1 57.7 93.7
#> 48 48 2.1 24.6 65.2 87.8 8.1 0.2 2.0 6.1 57.7 93.7
#> 49 49 2.1 24.6 65.2 87.8 8.1 0.2 2.0 6.1 57.7 93.7
#> 50 50 0.9 12.9 51.9 81.6 3.3 0.0 0.9 2.5 43.2 89.9
#> 51 51 0.9 12.9 51.9 81.6 3.3 0.0 0.9 2.5 43.2 89.9
#> 52 52 0.9 12.9 51.9 81.6 3.3 0.0 0.9 2.5 43.2 89.9
#> 53 53 0.9 12.9 51.9 81.6 3.3 0.0 0.9 2.5 43.2 89.9
#> 54 54 0.9 12.9 51.9 81.6 3.3 0.0 0.9 2.5 43.2 89.9
#> 55 55 0.2 6.5 36.4 67.7 1.2 0.0 0.2 0.9 28.7 81.0
#> 56 56 0.2 6.5 36.4 67.7 1.2 0.0 0.2 0.9 28.7 81.0
#> 57 57 0.2 6.5 36.4 67.7 1.2 0.0 0.2 0.9 28.7 81.0
#> 58 58 0.2 6.5 36.4 67.7 1.2 0.0 0.2 0.9 28.7 81.0
#> 59 59 0.2 6.5 36.4 67.7 1.2 0.0 0.2 0.9 28.7 81.0
#> 60 60 0.0 3.1 24.0 55.1 0.5 0.0 0.0 0.1 17.3 67.9
#> 61 61 0.0 3.1 24.0 55.1 0.5 0.0 0.0 0.1 17.3 67.9
#> 62 62 0.0 3.1 24.0 55.1 0.5 0.0 0.0 0.1 17.3 67.9
#> 63 63 0.0 3.1 24.0 55.1 0.5 0.0 0.0 0.1 17.3 67.9
#> 64 64 0.0 3.1 24.0 55.1 0.5 0.0 0.0 0.1 17.3 67.9
#> 65 65 0.0 1.1 12.1 33.0 0.2 0.0 0.0 0.1 10.3 52.9
#> 66 66 0.0 1.1 12.1 33.0 0.2 0.0 0.0 0.1 10.3 52.9
#> 67 67 0.0 1.1 12.1 33.0 0.2 0.0 0.0 0.1 10.3 52.9
#> 68 68 0.0 1.1 12.1 33.0 0.2 0.0 0.0 0.1 10.3 52.9
#> 69 69 0.0 1.1 12.1 33.0 0.2 0.0 0.0 0.1 10.3 52.9
#> 70 70 0.0 0.9 6.4 21.8 0.2 0.0 0.0 0.1 4.6 38.8
#> 71 71 0.0 0.9 6.4 21.8 0.2 0.0 0.0 0.1 4.6 38.8
#> 72 72 0.0 0.9 6.4 21.8 0.2 0.0 0.0 0.1 4.6 38.8
#> 73 73 0.0 0.9 6.4 21.8 0.2 0.0 0.0 0.1 4.6 38.8
#> 74 74 0.0 0.9 6.4 21.8 0.2 0.0 0.0 0.1 4.6 38.8
#> 75 75 0.0 0.9 6.4 16.4 0.2 0.0 0.0 0.1 4.6 26.6
#> 76 76 0.0 0.9 6.4 16.4 0.2 0.0 0.0 0.1 4.6 26.6
#> 77 77 0.0 0.9 6.4 16.4 0.2 0.0 0.0 0.1 4.6 26.6
#> 78 78 0.0 0.9 6.4 16.4 0.2 0.0 0.0 0.1 4.6 26.6
#> 79 79 0.0 0.9 6.4 16.4 0.2 0.0 0.0 0.1 4.6 26.6
#> 80 80 0.0 0.9 6.4 16.4 0.2 0.0 0.0 0.1 4.6 24.2
#> 81 81 0.0 0.9 6.4 16.4 0.2 0.0 0.0 0.1 4.6 24.2
#> 82 82 0.0 0.9 6.4 16.4 0.2 0.0 0.0 0.1 4.6 24.2
#> 83 83 0.0 0.9 6.4 16.4 0.2 0.0 0.0 0.1 4.6 24.2
#> 84 84 0.0 0.9 6.4 16.4 0.2 0.0 0.0 0.1 4.6 24.2
#> 85 85 0.0 0.9 6.4 16.4 0.2 0.0 0.0 0.1 4.6 24.2
#> 86 86 0.0 0.9 6.4 16.4 0.2 0.0 0.0 0.1 4.6 24.2
#> 87 87 0.0 0.9 6.4 16.4 0.2 0.0 0.0 0.1 4.6 24.2
#> 88 88 0.0 0.9 6.4 16.4 0.2 0.0 0.0 0.1 4.6 24.2
#> 89 89 0.0 0.9 6.4 16.4 0.2 0.0 0.0 0.1 4.6 24.2
#> 90 90 0.0 0.9 6.4 16.4 0.2 0.0 0.0 0.1 4.6 24.2
#> 91 91 0.0 0.9 6.4 16.4 0.2 0.0 0.0 0.1 4.6 24.2
#> 92 92 0.0 0.9 6.4 16.4 0.2 0.0 0.0 0.1 4.6 24.2
#> 93 93 0.0 0.9 6.4 16.4 0.2 0.0 0.0 0.1 4.6 24.2
#> 94 94 0.0 0.9 6.4 16.4 0.2 0.0 0.0 0.1 4.6 24.2
#> 95 95 0.0 0.9 6.4 16.4 0.2 0.0 0.0 0.1 4.6 24.2
#> 96 96 0.0 0.9 6.4 16.4 0.2 0.0 0.0 0.1 4.6 24.2
#> 97 97 0.0 0.9 6.4 16.4 0.2 0.0 0.0 0.1 4.6 24.2
#> 98 98 0.0 0.9 6.4 16.4 0.2 0.0 0.0 0.1 4.6 24.2
#> 99 99 0.0 0.9 6.4 16.4 0.2 0.0 0.0 0.1 4.6 24.2
#> 100 100 0.0 0.9 6.4 16.4 0.2 0.0 0.0 0.1 4.6 24.2
# Given a specific PPI score (from 0 - 100), get the row of poverty
# probabilities from PPI table it corresponds to
ppiScore <- 50
ppiECU2015[ppiECU2015$score == ppiScore, ]
#> score nlFood nl100 nl150 nl200 half100 ppp125 ppp200 ppp250 ppp500 ppp844
#> 50 50 0.9 12.9 51.9 81.6 3.3 0 0.9 2.5 43.2 89.9
# Use subset() function to get the row of poverty probabilities corresponding
# to specific PPI score
ppiScore <- 50
subset(ppiECU2015, score == ppiScore)
#> score nlFood nl100 nl150 nl200 half100 ppp125 ppp200 ppp250 ppp500 ppp844
#> 50 50 0.9 12.9 51.9 81.6 3.3 0 0.9 2.5 43.2 89.9
# Given a specific PPI score (from 0 - 100), get a poverty probability
# based on a specific poverty definition. In this example, the national
# poverty line definition
ppiScore <- 50
ppiECU2015[ppiECU2015$score == ppiScore, "nl100"]
#> [1] 12.9