Skip to contents

Poverty Probability Index (PPI) lookup table for Ecuador for 2022

Usage

ppiECU2022

Format

A data frame with 20 columns and 101 rows:

score

PPI score

nl100

National poverty line (100%)

nl_extreme

National poverty line (extreme)

nl150

National poverty line (150%)

nl200

National poverty line (200%)

ppp215

Below $2.15 per day purchasing power parity (2017)

ppp365

Below $3.65 per day purchasing power parity (2017)

ppp685

Below $6.85 per day purchasing power parity (2017)

ppp100

Below $1.00 per day purchasing power parity (2011)

ppp190

Below $1.90 per day purchasing power parity (2011)

ppp320

Below $3.20 per day purchasing power parity (2011)

ppp550

Below $5.50 per day purchasing power parity (2011)

ppp800

Below $8.00 per day purchasing power parity (2011)

ppp1100

Below $11.00 per day purchasing power parity (2011)

ppp1500

Below $15.00 per day purchasing power parity (2011)

ppp2170

Below $21.70 per day purchasing power parity (2011)

percentile20

Below 20th percentile poverty line

percentile40

Below 40th percentile poverty line

percentile60

Below 60th percentile poverty line

percentile80

Below 80th percentile poverty line

Examples

  # Access Ecuador PPI table
  ppiECU2015
#>     score nlFood nl100 nl150 nl200 half100 ppp125 ppp200 ppp250 ppp500 ppp844
#> 0       0   85.6  99.8 100.0 100.0    92.0   34.7   84.7   96.8  100.0  100.0
#> 1       1   85.6  99.8 100.0 100.0    92.0   34.7   84.7   96.8  100.0  100.0
#> 2       2   85.6  99.8 100.0 100.0    92.0   34.7   84.7   96.8  100.0  100.0
#> 3       3   85.6  99.8 100.0 100.0    92.0   34.7   84.7   96.8  100.0  100.0
#> 4       4   85.6  99.8 100.0 100.0    92.0   34.7   84.7   96.8  100.0  100.0
#> 5       5   68.7  98.3 100.0 100.0    80.3   25.9   67.5   81.2  100.0  100.0
#> 6       6   68.7  98.3 100.0 100.0    80.3   25.9   67.5   81.2  100.0  100.0
#> 7       7   68.7  98.3 100.0 100.0    80.3   25.9   67.5   81.2  100.0  100.0
#> 8       8   68.7  98.3 100.0 100.0    80.3   25.9   67.5   81.2  100.0  100.0
#> 9       9   68.7  98.3 100.0 100.0    80.3   25.9   67.5   81.2  100.0  100.0
#> 10     10   59.2  95.1 100.0 100.0    76.8   17.9   57.3   71.5   99.9  100.0
#> 11     11   59.2  95.1 100.0 100.0    76.8   17.9   57.3   71.5   99.9  100.0
#> 12     12   59.2  95.1 100.0 100.0    76.8   17.9   57.3   71.5   99.9  100.0
#> 13     13   59.2  95.1 100.0 100.0    76.8   17.9   57.3   71.5   99.9  100.0
#> 14     14   59.2  95.1 100.0 100.0    76.8   17.9   57.3   71.5   99.9  100.0
#> 15     15   37.8  93.0  99.7 100.0    70.3    9.0   36.6   64.3   99.0  100.0
#> 16     16   37.8  93.0  99.7 100.0    70.3    9.0   36.6   64.3   99.0  100.0
#> 17     17   37.8  93.0  99.7 100.0    70.3    9.0   36.6   64.3   99.0  100.0
#> 18     18   37.8  93.0  99.7 100.0    70.3    9.0   36.6   64.3   99.0  100.0
#> 19     19   37.8  93.0  99.7 100.0    70.3    9.0   36.6   64.3   99.0  100.0
#> 20     20   25.1  84.7  98.2 100.0    58.9    3.7   23.9   51.6   96.3  100.0
#> 21     21   25.1  84.7  98.2 100.0    58.9    3.7   23.9   51.6   96.3  100.0
#> 22     22   25.1  84.7  98.2 100.0    58.9    3.7   23.9   51.6   96.3  100.0
#> 23     23   25.1  84.7  98.2 100.0    58.9    3.7   23.9   51.6   96.3  100.0
#> 24     24   25.1  84.7  98.2 100.0    58.9    3.7   23.9   51.6   96.3  100.0
#> 25     25   16.6  74.2  97.1  99.7    41.7    1.8   16.2   34.3   95.0   99.9
#> 26     26   16.6  74.2  97.1  99.7    41.7    1.8   16.2   34.3   95.0   99.9
#> 27     27   16.6  74.2  97.1  99.7    41.7    1.8   16.2   34.3   95.0   99.9
#> 28     28   16.6  74.2  97.1  99.7    41.7    1.8   16.2   34.3   95.0   99.9
#> 29     29   16.6  74.2  97.1  99.7    41.7    1.8   16.2   34.3   95.0   99.9
#> 30     30    8.8  64.1  93.7  98.9    27.8    0.8    8.0   23.0   89.1   99.5
#> 31     31    8.8  64.1  93.7  98.9    27.8    0.8    8.0   23.0   89.1   99.5
#> 32     32    8.8  64.1  93.7  98.9    27.8    0.8    8.0   23.0   89.1   99.5
#> 33     33    8.8  64.1  93.7  98.9    27.8    0.8    8.0   23.0   89.1   99.5
#> 34     34    8.8  64.1  93.7  98.9    27.8    0.8    8.0   23.0   89.1   99.5
#> 35     35    6.0  50.0  88.9  98.2    20.1    0.4    5.6   15.1   83.5   99.3
#> 36     36    6.0  50.0  88.9  98.2    20.1    0.4    5.6   15.1   83.5   99.3
#> 37     37    6.0  50.0  88.9  98.2    20.1    0.4    5.6   15.1   83.5   99.3
#> 38     38    6.0  50.0  88.9  98.2    20.1    0.4    5.6   15.1   83.5   99.3
#> 39     39    6.0  50.0  88.9  98.2    20.1    0.4    5.6   15.1   83.5   99.3
#> 40     40    4.3  36.6  80.5  95.0    11.5    0.2    3.8   10.3   73.8   98.1
#> 41     41    4.3  36.6  80.5  95.0    11.5    0.2    3.8   10.3   73.8   98.1
#> 42     42    4.3  36.6  80.5  95.0    11.5    0.2    3.8   10.3   73.8   98.1
#> 43     43    4.3  36.6  80.5  95.0    11.5    0.2    3.8   10.3   73.8   98.1
#> 44     44    4.3  36.6  80.5  95.0    11.5    0.2    3.8   10.3   73.8   98.1
#> 45     45    2.1  24.6  65.2  87.8     8.1    0.2    2.0    6.1   57.7   93.7
#> 46     46    2.1  24.6  65.2  87.8     8.1    0.2    2.0    6.1   57.7   93.7
#> 47     47    2.1  24.6  65.2  87.8     8.1    0.2    2.0    6.1   57.7   93.7
#> 48     48    2.1  24.6  65.2  87.8     8.1    0.2    2.0    6.1   57.7   93.7
#> 49     49    2.1  24.6  65.2  87.8     8.1    0.2    2.0    6.1   57.7   93.7
#> 50     50    0.9  12.9  51.9  81.6     3.3    0.0    0.9    2.5   43.2   89.9
#> 51     51    0.9  12.9  51.9  81.6     3.3    0.0    0.9    2.5   43.2   89.9
#> 52     52    0.9  12.9  51.9  81.6     3.3    0.0    0.9    2.5   43.2   89.9
#> 53     53    0.9  12.9  51.9  81.6     3.3    0.0    0.9    2.5   43.2   89.9
#> 54     54    0.9  12.9  51.9  81.6     3.3    0.0    0.9    2.5   43.2   89.9
#> 55     55    0.2   6.5  36.4  67.7     1.2    0.0    0.2    0.9   28.7   81.0
#> 56     56    0.2   6.5  36.4  67.7     1.2    0.0    0.2    0.9   28.7   81.0
#> 57     57    0.2   6.5  36.4  67.7     1.2    0.0    0.2    0.9   28.7   81.0
#> 58     58    0.2   6.5  36.4  67.7     1.2    0.0    0.2    0.9   28.7   81.0
#> 59     59    0.2   6.5  36.4  67.7     1.2    0.0    0.2    0.9   28.7   81.0
#> 60     60    0.0   3.1  24.0  55.1     0.5    0.0    0.0    0.1   17.3   67.9
#> 61     61    0.0   3.1  24.0  55.1     0.5    0.0    0.0    0.1   17.3   67.9
#> 62     62    0.0   3.1  24.0  55.1     0.5    0.0    0.0    0.1   17.3   67.9
#> 63     63    0.0   3.1  24.0  55.1     0.5    0.0    0.0    0.1   17.3   67.9
#> 64     64    0.0   3.1  24.0  55.1     0.5    0.0    0.0    0.1   17.3   67.9
#> 65     65    0.0   1.1  12.1  33.0     0.2    0.0    0.0    0.1   10.3   52.9
#> 66     66    0.0   1.1  12.1  33.0     0.2    0.0    0.0    0.1   10.3   52.9
#> 67     67    0.0   1.1  12.1  33.0     0.2    0.0    0.0    0.1   10.3   52.9
#> 68     68    0.0   1.1  12.1  33.0     0.2    0.0    0.0    0.1   10.3   52.9
#> 69     69    0.0   1.1  12.1  33.0     0.2    0.0    0.0    0.1   10.3   52.9
#> 70     70    0.0   0.9   6.4  21.8     0.2    0.0    0.0    0.1    4.6   38.8
#> 71     71    0.0   0.9   6.4  21.8     0.2    0.0    0.0    0.1    4.6   38.8
#> 72     72    0.0   0.9   6.4  21.8     0.2    0.0    0.0    0.1    4.6   38.8
#> 73     73    0.0   0.9   6.4  21.8     0.2    0.0    0.0    0.1    4.6   38.8
#> 74     74    0.0   0.9   6.4  21.8     0.2    0.0    0.0    0.1    4.6   38.8
#> 75     75    0.0   0.9   6.4  16.4     0.2    0.0    0.0    0.1    4.6   26.6
#> 76     76    0.0   0.9   6.4  16.4     0.2    0.0    0.0    0.1    4.6   26.6
#> 77     77    0.0   0.9   6.4  16.4     0.2    0.0    0.0    0.1    4.6   26.6
#> 78     78    0.0   0.9   6.4  16.4     0.2    0.0    0.0    0.1    4.6   26.6
#> 79     79    0.0   0.9   6.4  16.4     0.2    0.0    0.0    0.1    4.6   26.6
#> 80     80    0.0   0.9   6.4  16.4     0.2    0.0    0.0    0.1    4.6   24.2
#> 81     81    0.0   0.9   6.4  16.4     0.2    0.0    0.0    0.1    4.6   24.2
#> 82     82    0.0   0.9   6.4  16.4     0.2    0.0    0.0    0.1    4.6   24.2
#> 83     83    0.0   0.9   6.4  16.4     0.2    0.0    0.0    0.1    4.6   24.2
#> 84     84    0.0   0.9   6.4  16.4     0.2    0.0    0.0    0.1    4.6   24.2
#> 85     85    0.0   0.9   6.4  16.4     0.2    0.0    0.0    0.1    4.6   24.2
#> 86     86    0.0   0.9   6.4  16.4     0.2    0.0    0.0    0.1    4.6   24.2
#> 87     87    0.0   0.9   6.4  16.4     0.2    0.0    0.0    0.1    4.6   24.2
#> 88     88    0.0   0.9   6.4  16.4     0.2    0.0    0.0    0.1    4.6   24.2
#> 89     89    0.0   0.9   6.4  16.4     0.2    0.0    0.0    0.1    4.6   24.2
#> 90     90    0.0   0.9   6.4  16.4     0.2    0.0    0.0    0.1    4.6   24.2
#> 91     91    0.0   0.9   6.4  16.4     0.2    0.0    0.0    0.1    4.6   24.2
#> 92     92    0.0   0.9   6.4  16.4     0.2    0.0    0.0    0.1    4.6   24.2
#> 93     93    0.0   0.9   6.4  16.4     0.2    0.0    0.0    0.1    4.6   24.2
#> 94     94    0.0   0.9   6.4  16.4     0.2    0.0    0.0    0.1    4.6   24.2
#> 95     95    0.0   0.9   6.4  16.4     0.2    0.0    0.0    0.1    4.6   24.2
#> 96     96    0.0   0.9   6.4  16.4     0.2    0.0    0.0    0.1    4.6   24.2
#> 97     97    0.0   0.9   6.4  16.4     0.2    0.0    0.0    0.1    4.6   24.2
#> 98     98    0.0   0.9   6.4  16.4     0.2    0.0    0.0    0.1    4.6   24.2
#> 99     99    0.0   0.9   6.4  16.4     0.2    0.0    0.0    0.1    4.6   24.2
#> 100   100    0.0   0.9   6.4  16.4     0.2    0.0    0.0    0.1    4.6   24.2

  # Given a specific PPI score (from 0 - 100), get the row of poverty
  # probabilities from PPI table it corresponds to
  ppiScore <- 50
  ppiECU2015[ppiECU2015$score == ppiScore, ]
#>    score nlFood nl100 nl150 nl200 half100 ppp125 ppp200 ppp250 ppp500 ppp844
#> 50    50    0.9  12.9  51.9  81.6     3.3      0    0.9    2.5   43.2   89.9

  # Use subset() function to get the row of poverty probabilities corresponding
  # to specific PPI score
  ppiScore <- 50
  subset(ppiECU2015, score == ppiScore)
#>    score nlFood nl100 nl150 nl200 half100 ppp125 ppp200 ppp250 ppp500 ppp844
#> 50    50    0.9  12.9  51.9  81.6     3.3      0    0.9    2.5   43.2   89.9

  # Given a specific PPI score (from 0 - 100), get a poverty probability
  # based on a specific poverty definition. In this example, the national
  # poverty line definition
  ppiScore <- 50
  ppiECU2015[ppiECU2015$score == ppiScore, "nl100"]
#> [1] 12.9