Poverty Probability Index (PPI) lookup table for Dominican Republic
Source:R/04_data.R
ppiDOM2010.Rd
Poverty Probability Index (PPI) lookup table for Dominican Republic
Format
A data frame with 11 columns and 101 rows:
score
PPI score
nl50
National poverty line (50%)
nl75
National poverty line (75%)
nl100
National poverty line (100%)
nl150
National poverty line (150%)
extreme
USAID extreme poverty
nl200
National poverty line (200%)
ppp125
Below $1.25 per day purchasing power parity (2005)
ppp250
Below $2.50 per day purchasing power parity (2005)
ppp375
Below $3.75 per day purchasing power parity (2005)
ppp500
Below $5.00 per day purchasing power parity (2005)
Examples
# Access Dominican Republic PPI table
ppiDOM2010
#> score nl50 nl75 nl100 nl150 extreme nl200 ppp125 ppp250 ppp375 ppp500
#> 0 0 45.3 71.9 91.3 100.0 64.3 100.0 10.2 49.5 77.3 100.0
#> 1 1 45.3 71.9 91.3 100.0 64.3 100.0 10.2 49.5 77.3 100.0
#> 2 2 45.3 71.9 91.3 100.0 64.3 100.0 10.2 49.5 77.3 100.0
#> 3 3 45.3 71.9 91.3 100.0 64.3 100.0 10.2 49.5 77.3 100.0
#> 4 4 45.3 71.9 91.3 100.0 64.3 100.0 10.2 49.5 77.3 100.0
#> 5 5 32.6 80.1 95.5 100.0 72.7 100.0 1.9 61.7 89.2 97.5
#> 6 6 32.6 80.1 95.5 100.0 72.7 100.0 1.9 61.7 89.2 97.5
#> 7 7 32.6 80.1 95.5 100.0 72.7 100.0 1.9 61.7 89.2 97.5
#> 8 8 32.6 80.1 95.5 100.0 72.7 100.0 1.9 61.7 89.2 97.5
#> 9 9 32.6 80.1 95.5 100.0 72.7 100.0 1.9 61.7 89.2 97.5
#> 10 10 25.9 62.7 85.9 95.7 52.2 99.3 0.0 35.8 78.5 92.1
#> 11 11 25.9 62.7 85.9 95.7 52.2 99.3 0.0 35.8 78.5 92.1
#> 12 12 25.9 62.7 85.9 95.7 52.2 99.3 0.0 35.8 78.5 92.1
#> 13 13 25.9 62.7 85.9 95.7 52.2 99.3 0.0 35.8 78.5 92.1
#> 14 14 25.9 62.7 85.9 95.7 52.2 99.3 0.0 35.8 78.5 92.1
#> 15 15 20.1 57.9 77.4 91.8 49.7 97.7 2.8 32.1 72.8 85.6
#> 16 16 20.1 57.9 77.4 91.8 49.7 97.7 2.8 32.1 72.8 85.6
#> 17 17 20.1 57.9 77.4 91.8 49.7 97.7 2.8 32.1 72.8 85.6
#> 18 18 20.1 57.9 77.4 91.8 49.7 97.7 2.8 32.1 72.8 85.6
#> 19 19 20.1 57.9 77.4 91.8 49.7 97.7 2.8 32.1 72.8 85.6
#> 20 20 16.6 41.6 65.8 92.7 35.2 96.6 2.0 24.2 55.2 78.2
#> 21 21 16.6 41.6 65.8 92.7 35.2 96.6 2.0 24.2 55.2 78.2
#> 22 22 16.6 41.6 65.8 92.7 35.2 96.6 2.0 24.2 55.2 78.2
#> 23 23 16.6 41.6 65.8 92.7 35.2 96.6 2.0 24.2 55.2 78.2
#> 24 24 16.6 41.6 65.8 92.7 35.2 96.6 2.0 24.2 55.2 78.2
#> 25 25 9.3 30.2 53.6 82.9 23.3 91.2 1.6 15.5 42.7 68.0
#> 26 26 9.3 30.2 53.6 82.9 23.3 91.2 1.6 15.5 42.7 68.0
#> 27 27 9.3 30.2 53.6 82.9 23.3 91.2 1.6 15.5 42.7 68.0
#> 28 28 9.3 30.2 53.6 82.9 23.3 91.2 1.6 15.5 42.7 68.0
#> 29 29 9.3 30.2 53.6 82.9 23.3 91.2 1.6 15.5 42.7 68.0
#> 30 30 4.8 22.2 43.5 77.2 17.3 90.8 1.4 9.1 33.5 58.2
#> 31 31 4.8 22.2 43.5 77.2 17.3 90.8 1.4 9.1 33.5 58.2
#> 32 32 4.8 22.2 43.5 77.2 17.3 90.8 1.4 9.1 33.5 58.2
#> 33 33 4.8 22.2 43.5 77.2 17.3 90.8 1.4 9.1 33.5 58.2
#> 34 34 4.8 22.2 43.5 77.2 17.3 90.8 1.4 9.1 33.5 58.2
#> 35 35 3.8 9.4 27.9 66.1 6.7 84.2 0.4 4.5 18.6 45.4
#> 36 36 3.8 9.4 27.9 66.1 6.7 84.2 0.4 4.5 18.6 45.4
#> 37 37 3.8 9.4 27.9 66.1 6.7 84.2 0.4 4.5 18.6 45.4
#> 38 38 3.8 9.4 27.9 66.1 6.7 84.2 0.4 4.5 18.6 45.4
#> 39 39 3.8 9.4 27.9 66.1 6.7 84.2 0.4 4.5 18.6 45.4
#> 40 40 1.7 8.0 25.4 54.7 6.0 74.5 0.2 3.6 16.6 36.2
#> 41 41 1.7 8.0 25.4 54.7 6.0 74.5 0.2 3.6 16.6 36.2
#> 42 42 1.7 8.0 25.4 54.7 6.0 74.5 0.2 3.6 16.6 36.2
#> 43 43 1.7 8.0 25.4 54.7 6.0 74.5 0.2 3.6 16.6 36.2
#> 44 44 1.7 8.0 25.4 54.7 6.0 74.5 0.2 3.6 16.6 36.2
#> 45 45 1.1 5.1 14.1 40.1 4.6 60.9 0.0 2.2 7.1 22.3
#> 46 46 1.1 5.1 14.1 40.1 4.6 60.9 0.0 2.2 7.1 22.3
#> 47 47 1.1 5.1 14.1 40.1 4.6 60.9 0.0 2.2 7.1 22.3
#> 48 48 1.1 5.1 14.1 40.1 4.6 60.9 0.0 2.2 7.1 22.3
#> 49 49 1.1 5.1 14.1 40.1 4.6 60.9 0.0 2.2 7.1 22.3
#> 50 50 1.0 4.2 9.6 27.4 2.7 52.9 0.4 1.5 6.8 15.2
#> 51 51 1.0 4.2 9.6 27.4 2.7 52.9 0.4 1.5 6.8 15.2
#> 52 52 1.0 4.2 9.6 27.4 2.7 52.9 0.4 1.5 6.8 15.2
#> 53 53 1.0 4.2 9.6 27.4 2.7 52.9 0.4 1.5 6.8 15.2
#> 54 54 1.0 4.2 9.6 27.4 2.7 52.9 0.4 1.5 6.8 15.2
#> 55 55 0.0 0.0 3.7 17.7 0.0 33.6 0.0 0.0 1.6 6.4
#> 56 56 0.0 0.0 3.7 17.7 0.0 33.6 0.0 0.0 1.6 6.4
#> 57 57 0.0 0.0 3.7 17.7 0.0 33.6 0.0 0.0 1.6 6.4
#> 58 58 0.0 0.0 3.7 17.7 0.0 33.6 0.0 0.0 1.6 6.4
#> 59 59 0.0 0.0 3.7 17.7 0.0 33.6 0.0 0.0 1.6 6.4
#> 60 60 0.3 0.3 1.3 10.2 0.3 22.0 0.0 0.3 0.3 2.3
#> 61 61 0.3 0.3 1.3 10.2 0.3 22.0 0.0 0.3 0.3 2.3
#> 62 62 0.3 0.3 1.3 10.2 0.3 22.0 0.0 0.3 0.3 2.3
#> 63 63 0.3 0.3 1.3 10.2 0.3 22.0 0.0 0.3 0.3 2.3
#> 64 64 0.3 0.3 1.3 10.2 0.3 22.0 0.0 0.3 0.3 2.3
#> 65 65 0.0 1.9 5.4 15.5 1.9 34.4 0.0 0.0 3.5 9.2
#> 66 66 0.0 1.9 5.4 15.5 1.9 34.4 0.0 0.0 3.5 9.2
#> 67 67 0.0 1.9 5.4 15.5 1.9 34.4 0.0 0.0 3.5 9.2
#> 68 68 0.0 1.9 5.4 15.5 1.9 34.4 0.0 0.0 3.5 9.2
#> 69 69 0.0 1.9 5.4 15.5 1.9 34.4 0.0 0.0 3.5 9.2
#> 70 70 0.0 0.0 4.7 14.2 0.0 27.0 0.0 0.0 0.0 6.4
#> 71 71 0.0 0.0 4.7 14.2 0.0 27.0 0.0 0.0 0.0 6.4
#> 72 72 0.0 0.0 4.7 14.2 0.0 27.0 0.0 0.0 0.0 6.4
#> 73 73 0.0 0.0 4.7 14.2 0.0 27.0 0.0 0.0 0.0 6.4
#> 74 74 0.0 0.0 4.7 14.2 0.0 27.0 0.0 0.0 0.0 6.4
#> 75 75 0.0 0.0 2.5 4.6 0.0 8.7 0.0 0.0 0.0 3.0
#> 76 76 0.0 0.0 2.5 4.6 0.0 8.7 0.0 0.0 0.0 3.0
#> 77 77 0.0 0.0 2.5 4.6 0.0 8.7 0.0 0.0 0.0 3.0
#> 78 78 0.0 0.0 2.5 4.6 0.0 8.7 0.0 0.0 0.0 3.0
#> 79 79 0.0 0.0 2.5 4.6 0.0 8.7 0.0 0.0 0.0 3.0
#> 80 80 0.0 0.0 0.0 0.0 0.0 4.3 0.0 0.0 0.0 0.0
#> 81 81 0.0 0.0 0.0 0.0 0.0 4.3 0.0 0.0 0.0 0.0
#> 82 82 0.0 0.0 0.0 0.0 0.0 4.3 0.0 0.0 0.0 0.0
#> 83 83 0.0 0.0 0.0 0.0 0.0 4.3 0.0 0.0 0.0 0.0
#> 84 84 0.0 0.0 0.0 0.0 0.0 4.3 0.0 0.0 0.0 0.0
#> 85 85 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
#> 86 86 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
#> 87 87 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
#> 88 88 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
#> 89 89 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
#> 90 90 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
#> 91 91 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
#> 92 92 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
#> 93 93 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
#> 94 94 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
#> 95 95 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
#> 96 96 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
#> 97 97 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
#> 98 98 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
#> 99 99 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
#> 100 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
# Given a specific PPI score (from 0 - 100), get the row of poverty
# probabilities from PPI table it corresponds to
ppiScore <- 50
ppiDOM2010[ppiDOM2010$score == ppiScore, ]
#> score nl50 nl75 nl100 nl150 extreme nl200 ppp125 ppp250 ppp375 ppp500
#> 50 50 1 4.2 9.6 27.4 2.7 52.9 0.4 1.5 6.8 15.2
# Use subset() function to get the row of poverty probabilities corresponding
# to specific PPI score
ppiScore <- 50
subset(ppiDOM2010, score == ppiScore)
#> score nl50 nl75 nl100 nl150 extreme nl200 ppp125 ppp250 ppp375 ppp500
#> 50 50 1 4.2 9.6 27.4 2.7 52.9 0.4 1.5 6.8 15.2
# Given a specific PPI score (from 0 - 100), get a poverty probability
# based on a specific poverty definition. In this example, the USAID
# extreme poverty definition
ppiScore <- 50
ppiDOM2010[ppiDOM2010$score == ppiScore, "extreme"]
#> [1] 2.7