
Poverty Probability Index (PPI) lookup table for Colombia based on data from the 2022 Gran Encuesta Integrada de Hogares (GEIH).
Source:R/00_colombia.R
ppiCOL2024.RdPoverty Probability Index (PPI) lookup table for Colombia based on data from the 2022 Gran Encuesta Integrada de Hogares (GEIH).
Format
A data frame with 16 columns and 101 rows:
scorePPI score
nl100National poverty line (100%)
nl_extremeNational poverty line (extreme)
nl150National poverty line (150%)
nl200National poverty line (200%)
ppp215Below $2.15 per day purchasing power parity (2017)
ppp365Below $3.65 per day purchasing power parity (2017)
ppp685Below $6.85 per day purchasing power parity (2017)
ppp190Below $1.90 per day purchasing power parity (2011)
ppp320Below $3.20 per day purchasing power parity (2011)
ppp550Below $5.50 per day purchasing power parity (2011)
percentile20Below 20th percentile poverty line
percentile40Below 40th percentile poverty line
percentile60Below 60th percentile poverty line
percentile80Below 80th percentile poverty line
Examples
# Access Colombia PPI table
ppiCOL2024
#> # A tibble: 101 × 15
#> score nl100 nl_extreme nl150 nl200 ppp215 ppp365 ppp685 ppp190 ppp320 ppp550
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0 98.6 93.4 99.7 99.9 88.9 94.3 99.5 86.6 93.9 99.0
#> 2 1 98.5 92.8 99.7 99.9 88.0 93.8 99.4 85.6 93.4 98.9
#> 3 2 98.4 92.2 99.7 99.9 87.1 93.3 99.3 84.6 92.8 98.8
#> 4 3 98.2 91.6 99.6 99.9 86.1 92.7 99.3 83.5 92.2 98.6
#> 5 4 98.1 90.9 99.6 99.8 85.0 92.0 99.2 82.3 91.5 98.5
#> 6 5 97.9 90.2 99.6 99.8 83.9 91.3 99.1 81.1 90.8 98.3
#> 7 6 97.7 89.4 99.5 99.8 82.7 90.6 99.0 79.8 90.0 98.2
#> 8 7 97.5 88.5 99.5 99.8 81.5 89.7 98.9 78.5 89.1 98.0
#> 9 8 97.3 87.6 99.4 99.8 80.2 88.9 98.8 77.0 88.2 97.8
#> 10 9 97.0 86.6 99.3 99.7 78.8 87.9 98.7 75.6 87.2 97.6
#> # ℹ 91 more rows
#> # ℹ 4 more variables: percentile20 <dbl>, percentile40 <dbl>,
#> # percentile60 <dbl>, percentile80 <dbl>
# Given a specific PPI score (from 0 - 100), get the row of poverty
# probabilities from PPI table it corresponds to
ppiScore <- 50
ppiCOL2024[ppiCOL2024$score == ppiScore, ]
#> # A tibble: 1 × 15
#> score nl100 nl_extreme nl150 nl200 ppp215 ppp365 ppp685 ppp190 ppp320 ppp550
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 50 45.8 15.9 69.6 82.3 10.2 14.5 52.0 9.62 14.2 44.5
#> # ℹ 4 more variables: percentile20 <dbl>, percentile40 <dbl>,
#> # percentile60 <dbl>, percentile80 <dbl>
# Use subset() function to get the row of poverty probabilities corresponding
# to specific PPI score
ppiScore <- 50
subset(ppiCOL2024, score == ppiScore)
#> # A tibble: 1 × 15
#> score nl100 nl_extreme nl150 nl200 ppp215 ppp365 ppp685 ppp190 ppp320 ppp550
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 50 45.8 15.9 69.6 82.3 10.2 14.5 52.0 9.62 14.2 44.5
#> # ℹ 4 more variables: percentile20 <dbl>, percentile40 <dbl>,
#> # percentile60 <dbl>, percentile80 <dbl>
# Given a specific PPI score (from 0 - 100), get a poverty probability
# based on a specific poverty definition. In this example, the USAID
# extreme poverty definition
ppiScore <- 50
ppiCOL2024[ppiCOL2024$score == ppiScore, "nl100"]
#> # A tibble: 1 × 1
#> nl100
#> <dbl>
#> 1 45.8