Skip to contents

Poverty Probability Index (PPI) lookup table for Ivory Coast

Usage

ppiCIV2013

Format

A data frame with 9 columns and 101 rows:

score

PPI score

nl100

National poverty line (100%)

nl150

National poverty line (150%)

nl200

National poverty line (200%)

extreme

USAID extreme poverty

ppp125

Below $1.25 per day purchasing power parity (2005)

ppp200

Below $2.00 per day purchasing power parity (2005)

ppp250

Below $2.50 per day purchasing power parity (2011)

ppp800

Below $8.00 per day purchasing power parity (2011)

Examples

  # Access Ivory Coast PPI table
  ppiCIV2013
#>     score nl100 nl150 nl200 extreme ppp125 ppp200 ppp250 ppp800
#> 0       0 100.0 100.0 100.0   100.0  100.0  100.0  100.0  100.0
#> 1       1 100.0 100.0 100.0   100.0  100.0  100.0  100.0  100.0
#> 2       2 100.0 100.0 100.0   100.0  100.0  100.0  100.0  100.0
#> 3       3 100.0 100.0 100.0   100.0  100.0  100.0  100.0  100.0
#> 4       4 100.0 100.0 100.0   100.0  100.0  100.0  100.0  100.0
#> 5       5  92.7  98.0 100.0    68.4   81.7   96.7   98.0  100.0
#> 6       6  92.7  98.0 100.0    68.4   81.7   96.7   98.0  100.0
#> 7       7  92.7  98.0 100.0    68.4   81.7   96.7   98.0  100.0
#> 8       8  92.7  98.0 100.0    68.4   81.7   96.7   98.0  100.0
#> 9       9  92.7  98.0 100.0    68.4   81.7   96.7   98.0  100.0
#> 10     10  87.6  97.0  99.5    53.1   71.5   93.9   97.2  100.0
#> 11     11  87.6  97.0  99.5    53.1   71.5   93.9   97.2  100.0
#> 12     12  87.6  97.0  99.5    53.1   71.5   93.9   97.2  100.0
#> 13     13  87.6  97.0  99.5    53.1   71.5   93.9   97.2  100.0
#> 14     14  87.6  97.0  99.5    53.1   71.5   93.9   97.2  100.0
#> 15     15  79.6  93.6  98.2    49.7   66.1   89.0   94.9  100.0
#> 16     16  79.6  93.6  98.2    49.7   66.1   89.0   94.9  100.0
#> 17     17  79.6  93.6  98.2    49.7   66.1   89.0   94.9  100.0
#> 18     18  79.6  93.6  98.2    49.7   66.1   89.0   94.9  100.0
#> 19     19  79.6  93.6  98.2    49.7   66.1   89.0   94.9  100.0
#> 20     20  77.7  92.1  97.2    42.0   58.3   87.1   93.6   99.9
#> 21     21  77.7  92.1  97.2    42.0   58.3   87.1   93.6   99.9
#> 22     22  77.7  92.1  97.2    42.0   58.3   87.1   93.6   99.9
#> 23     23  77.7  92.1  97.2    42.0   58.3   87.1   93.6   99.9
#> 24     24  77.7  92.1  97.2    42.0   58.3   87.1   93.6   99.9
#> 25     25  75.8  90.7  96.3    37.5   56.5   85.6   92.0   99.9
#> 26     26  75.8  90.7  96.3    37.5   56.5   85.6   92.0   99.9
#> 27     27  75.8  90.7  96.3    37.5   56.5   85.6   92.0   99.9
#> 28     28  75.8  90.7  96.3    37.5   56.5   85.6   92.0   99.9
#> 29     29  75.8  90.7  96.3    37.5   56.5   85.6   92.0   99.9
#> 30     30  58.0  84.1  94.0    26.3   40.1   72.9   86.6   99.9
#> 31     31  58.0  84.1  94.0    26.3   40.1   72.9   86.6   99.9
#> 32     32  58.0  84.1  94.0    26.3   40.1   72.9   86.6   99.9
#> 33     33  58.0  84.1  94.0    26.3   40.1   72.9   86.6   99.9
#> 34     34  58.0  84.1  94.0    26.3   40.1   72.9   86.6   99.9
#> 35     35  50.7  80.0  92.1    20.9   33.2   68.4   81.6   99.9
#> 36     36  50.7  80.0  92.1    20.9   33.2   68.4   81.6   99.9
#> 37     37  50.7  80.0  92.1    20.9   33.2   68.4   81.6   99.9
#> 38     38  50.7  80.0  92.1    20.9   33.2   68.4   81.6   99.9
#> 39     39  50.7  80.0  92.1    20.9   33.2   68.4   81.6   99.9
#> 40     40  42.3  70.8  85.5    16.7   27.1   59.4   74.1   99.6
#> 41     41  42.3  70.8  85.5    16.7   27.1   59.4   74.1   99.6
#> 42     42  42.3  70.8  85.5    16.7   27.1   59.4   74.1   99.6
#> 43     43  42.3  70.8  85.5    16.7   27.1   59.4   74.1   99.6
#> 44     44  42.3  70.8  85.5    16.7   27.1   59.4   74.1   99.6
#> 45     45  28.9  58.9  76.1    10.1   18.1   44.8   61.8   98.7
#> 46     46  28.9  58.9  76.1    10.1   18.1   44.8   61.8   98.7
#> 47     47  28.9  58.9  76.1    10.1   18.1   44.8   61.8   98.7
#> 48     48  28.9  58.9  76.1    10.1   18.1   44.8   61.8   98.7
#> 49     49  28.9  58.9  76.1    10.1   18.1   44.8   61.8   98.7
#> 50     50  18.3  49.0  69.1     3.7    8.2   33.7   53.7   96.9
#> 51     51  18.3  49.0  69.1     3.7    8.2   33.7   53.7   96.9
#> 52     52  18.3  49.0  69.1     3.7    8.2   33.7   53.7   96.9
#> 53     53  18.3  49.0  69.1     3.7    8.2   33.7   53.7   96.9
#> 54     54  18.3  49.0  69.1     3.7    8.2   33.7   53.7   96.9
#> 55     55  12.0  34.7  52.9     2.0    5.0   22.3   37.2   95.3
#> 56     56  12.0  34.7  52.9     2.0    5.0   22.3   37.2   95.3
#> 57     57  12.0  34.7  52.9     2.0    5.0   22.3   37.2   95.3
#> 58     58  12.0  34.7  52.9     2.0    5.0   22.3   37.2   95.3
#> 59     59  12.0  34.7  52.9     2.0    5.0   22.3   37.2   95.3
#> 60     60   4.4  22.4  43.6     1.0    2.2   11.8   25.1   91.9
#> 61     61   4.4  22.4  43.6     1.0    2.2   11.8   25.1   91.9
#> 62     62   4.4  22.4  43.6     1.0    2.2   11.8   25.1   91.9
#> 63     63   4.4  22.4  43.6     1.0    2.2   11.8   25.1   91.9
#> 64     64   4.4  22.4  43.6     1.0    2.2   11.8   25.1   91.9
#> 65     65   2.9  13.9  32.6     0.5    1.2    8.1   16.7   87.2
#> 66     66   2.9  13.9  32.6     0.5    1.2    8.1   16.7   87.2
#> 67     67   2.9  13.9  32.6     0.5    1.2    8.1   16.7   87.2
#> 68     68   2.9  13.9  32.6     0.5    1.2    8.1   16.7   87.2
#> 69     69   2.9  13.9  32.6     0.5    1.2    8.1   16.7   87.2
#> 70     70   1.0  10.6  22.2     0.1    0.1    4.3   12.2   83.3
#> 71     71   1.0  10.6  22.2     0.1    0.1    4.3   12.2   83.3
#> 72     72   1.0  10.6  22.2     0.1    0.1    4.3   12.2   83.3
#> 73     73   1.0  10.6  22.2     0.1    0.1    4.3   12.2   83.3
#> 74     74   1.0  10.6  22.2     0.1    0.1    4.3   12.2   83.3
#> 75     75   0.3   6.5  17.3     0.0    0.0    2.5    6.5   73.7
#> 76     76   0.3   6.5  17.3     0.0    0.0    2.5    6.5   73.7
#> 77     77   0.3   6.5  17.3     0.0    0.0    2.5    6.5   73.7
#> 78     78   0.3   6.5  17.3     0.0    0.0    2.5    6.5   73.7
#> 79     79   0.3   6.5  17.3     0.0    0.0    2.5    6.5   73.7
#> 80     80   0.0   0.5   5.7     0.0    0.0    0.0    2.1   56.2
#> 81     81   0.0   0.5   5.7     0.0    0.0    0.0    2.1   56.2
#> 82     82   0.0   0.5   5.7     0.0    0.0    0.0    2.1   56.2
#> 83     83   0.0   0.5   5.7     0.0    0.0    0.0    2.1   56.2
#> 84     84   0.0   0.5   5.7     0.0    0.0    0.0    2.1   56.2
#> 85     85   0.0   0.0   3.5     0.0    0.0    0.0    0.9   37.7
#> 86     86   0.0   0.0   3.5     0.0    0.0    0.0    0.9   37.7
#> 87     87   0.0   0.0   3.5     0.0    0.0    0.0    0.9   37.7
#> 88     88   0.0   0.0   3.5     0.0    0.0    0.0    0.9   37.7
#> 89     89   0.0   0.0   3.5     0.0    0.0    0.0    0.9   37.7
#> 90     90   0.0   0.0   0.6     0.0    0.0    0.0    0.0   17.1
#> 91     91   0.0   0.0   0.6     0.0    0.0    0.0    0.0   17.1
#> 92     92   0.0   0.0   0.6     0.0    0.0    0.0    0.0   17.1
#> 93     93   0.0   0.0   0.6     0.0    0.0    0.0    0.0   17.1
#> 94     94   0.0   0.0   0.6     0.0    0.0    0.0    0.0   17.1
#> 95     95   0.0   0.0   0.0     0.0    0.0    0.0    0.0   11.8
#> 96     96   0.0   0.0   0.0     0.0    0.0    0.0    0.0   11.8
#> 97     97   0.0   0.0   0.0     0.0    0.0    0.0    0.0   11.8
#> 98     98   0.0   0.0   0.0     0.0    0.0    0.0    0.0   11.8
#> 99     99   0.0   0.0   0.0     0.0    0.0    0.0    0.0   11.8
#> 100   100   0.0   0.0   0.0     0.0    0.0    0.0    0.0   11.8

  # Given a specific PPI score (from 0 - 100), get the row of poverty
  # probabilities from PPI table it corresponds to
  ppiScore <- 50
  ppiCIV2013[ppiCIV2013$score == ppiScore, ]
#>    score nl100 nl150 nl200 extreme ppp125 ppp200 ppp250 ppp800
#> 50    50  18.3    49  69.1     3.7    8.2   33.7   53.7   96.9

  # Use subset() function to get the row of poverty probabilities corresponding
  # to specific PPI score
  ppiScore <- 50
  subset(ppiCIV2013, score == ppiScore)
#>    score nl100 nl150 nl200 extreme ppp125 ppp200 ppp250 ppp800
#> 50    50  18.3    49  69.1     3.7    8.2   33.7   53.7   96.9

  # Given a specific PPI score (from 0 - 100), get a poverty probability
  # based on a specific poverty definition. In this example, the USAID
  # extreme poverty definition
  ppiScore <- 50
  ppiCIV2013[ppiCIV2013$score == ppiScore, "extreme"]
#> [1] 3.7