Skip to contents

Poverty Probability Index (PPI) lookup table for Brazil

Usage

ppiBRA2010

Format

A data frame with 10 columns and 101 rows:

score

PPI score

belowHalfWage

Below the half minimum wage line

belowQtrWage

Below the quarter minimum wage line

belowOneWage

Below the one minimum wage line

belowTwoWage

Below the two minimum wage line

extreme

USAID extreme poverty

ppp125

Below $1.25 per day purchasing power parity (2005)

ppp250

Below $2.50 per day purchasing power parity (2005)

ppp375

Below $3.75 per day purchasing power parity (2005)

ppp500

Below $5.00 per day purchasing power parity (2005)

Examples

  # Access Brazil PPI table
  ppiBRA2010
#>     score belowHalfWage belowQtrWage belowOneWage belowTwoWage extreme ppp125
#> 0       0          95.0         71.7         99.5        100.0    80.2   46.4
#> 1       1          95.0         71.7         99.5        100.0    80.2   46.4
#> 2       2          95.0         71.7         99.5        100.0    80.2   46.4
#> 3       3          95.0         71.7         99.5        100.0    80.2   46.4
#> 4       4          95.0         71.7         99.5        100.0    80.2   46.4
#> 5       5          93.4         65.4         99.6        100.0    77.2   34.2
#> 6       6          93.4         65.4         99.6        100.0    77.2   34.2
#> 7       7          93.4         65.4         99.6        100.0    77.2   34.2
#> 8       8          93.4         65.4         99.6        100.0    77.2   34.2
#> 9       9          93.4         65.4         99.6        100.0    77.2   34.2
#> 10     10          89.4         51.6         99.5        100.0    65.0   24.0
#> 11     11          89.4         51.6         99.5        100.0    65.0   24.0
#> 12     12          89.4         51.6         99.5        100.0    65.0   24.0
#> 13     13          89.4         51.6         99.5        100.0    65.0   24.0
#> 14     14          89.4         51.6         99.5        100.0    65.0   24.0
#> 15     15          81.1         35.0         98.5         99.9    47.0   14.0
#> 16     16          81.1         35.0         98.5         99.9    47.0   14.0
#> 17     17          81.1         35.0         98.5         99.9    47.0   14.0
#> 18     18          81.1         35.0         98.5         99.9    47.0   14.0
#> 19     19          81.1         35.0         98.5         99.9    47.0   14.0
#> 20     20          68.7         24.6         96.2         99.7    36.1   10.2
#> 21     21          68.7         24.6         96.2         99.7    36.1   10.2
#> 22     22          68.7         24.6         96.2         99.7    36.1   10.2
#> 23     23          68.7         24.6         96.2         99.7    36.1   10.2
#> 24     24          68.7         24.6         96.2         99.7    36.1   10.2
#> 25     25          54.2         16.1         92.2         99.4    23.2    7.1
#> 26     26          54.2         16.1         92.2         99.4    23.2    7.1
#> 27     27          54.2         16.1         92.2         99.4    23.2    7.1
#> 28     28          54.2         16.1         92.2         99.4    23.2    7.1
#> 29     29          54.2         16.1         92.2         99.4    23.2    7.1
#> 30     30          41.1         10.5         85.0         98.7    15.2    4.6
#> 31     31          41.1         10.5         85.0         98.7    15.2    4.6
#> 32     32          41.1         10.5         85.0         98.7    15.2    4.6
#> 33     33          41.1         10.5         85.0         98.7    15.2    4.6
#> 34     34          41.1         10.5         85.0         98.7    15.2    4.6
#> 35     35          26.1          6.2         75.3         96.5     8.3    3.3
#> 36     36          26.1          6.2         75.3         96.5     8.3    3.3
#> 37     37          26.1          6.2         75.3         96.5     8.3    3.3
#> 38     38          26.1          6.2         75.3         96.5     8.3    3.3
#> 39     39          26.1          6.2         75.3         96.5     8.3    3.3
#> 40     40          17.4          3.9         61.8         93.7     5.1    2.0
#> 41     41          17.4          3.9         61.8         93.7     5.1    2.0
#> 42     42          17.4          3.9         61.8         93.7     5.1    2.0
#> 43     43          17.4          3.9         61.8         93.7     5.1    2.0
#> 44     44          17.4          3.9         61.8         93.7     5.1    2.0
#> 45     45          12.4          2.6         52.0         89.6     3.1    1.9
#> 46     46          12.4          2.6         52.0         89.6     3.1    1.9
#> 47     47          12.4          2.6         52.0         89.6     3.1    1.9
#> 48     48          12.4          2.6         52.0         89.6     3.1    1.9
#> 49     49          12.4          2.6         52.0         89.6     3.1    1.9
#> 50     50           6.9          1.7         35.6         82.1     2.1    1.5
#> 51     51           6.9          1.7         35.6         82.1     2.1    1.5
#> 52     52           6.9          1.7         35.6         82.1     2.1    1.5
#> 53     53           6.9          1.7         35.6         82.1     2.1    1.5
#> 54     54           6.9          1.7         35.6         82.1     2.1    1.5
#> 55     55           3.4          1.2         24.4         69.4     1.2    1.0
#> 56     56           3.4          1.2         24.4         69.4     1.2    1.0
#> 57     57           3.4          1.2         24.4         69.4     1.2    1.0
#> 58     58           3.4          1.2         24.4         69.4     1.2    1.0
#> 59     59           3.4          1.2         24.4         69.4     1.2    1.0
#> 60     60           2.1          1.1         15.4         58.8     1.2    1.1
#> 61     61           2.1          1.1         15.4         58.8     1.2    1.1
#> 62     62           2.1          1.1         15.4         58.8     1.2    1.1
#> 63     63           2.1          1.1         15.4         58.8     1.2    1.1
#> 64     64           2.1          1.1         15.4         58.8     1.2    1.1
#> 65     65           1.0          0.4          8.9         42.9     0.4    0.4
#> 66     66           1.0          0.4          8.9         42.9     0.4    0.4
#> 67     67           1.0          0.4          8.9         42.9     0.4    0.4
#> 68     68           1.0          0.4          8.9         42.9     0.4    0.4
#> 69     69           1.0          0.4          8.9         42.9     0.4    0.4
#> 70     70           1.1          0.6          3.9         29.8     0.6    0.6
#> 71     71           1.1          0.6          3.9         29.8     0.6    0.6
#> 72     72           1.1          0.6          3.9         29.8     0.6    0.6
#> 73     73           1.1          0.6          3.9         29.8     0.6    0.6
#> 74     74           1.1          0.6          3.9         29.8     0.6    0.6
#> 75     75           0.1          0.0          1.4         19.4     0.0    0.0
#> 76     76           0.1          0.0          1.4         19.4     0.0    0.0
#> 77     77           0.1          0.0          1.4         19.4     0.0    0.0
#> 78     78           0.1          0.0          1.4         19.4     0.0    0.0
#> 79     79           0.1          0.0          1.4         19.4     0.0    0.0
#> 80     80           0.1          0.0          0.8         10.3     0.0    0.0
#> 81     81           0.1          0.0          0.8         10.3     0.0    0.0
#> 82     82           0.1          0.0          0.8         10.3     0.0    0.0
#> 83     83           0.1          0.0          0.8         10.3     0.0    0.0
#> 84     84           0.1          0.0          0.8         10.3     0.0    0.0
#> 85     85           0.0          0.0          1.4          7.5     0.0    0.0
#> 86     86           0.0          0.0          1.4          7.5     0.0    0.0
#> 87     87           0.0          0.0          1.4          7.5     0.0    0.0
#> 88     88           0.0          0.0          1.4          7.5     0.0    0.0
#> 89     89           0.0          0.0          1.4          7.5     0.0    0.0
#> 90     90           0.0          0.0          0.0          5.7     0.0    0.0
#> 91     91           0.0          0.0          0.0          5.7     0.0    0.0
#> 92     92           0.0          0.0          0.0          5.7     0.0    0.0
#> 93     93           0.0          0.0          0.0          5.7     0.0    0.0
#> 94     94           0.0          0.0          0.0          5.7     0.0    0.0
#> 95     95           0.0          0.0          0.0          0.0     0.0    0.0
#> 96     96           0.0          0.0          0.0          0.0     0.0    0.0
#> 97     97           0.0          0.0          0.0          0.0     0.0    0.0
#> 98     98           0.0          0.0          0.0          0.0     0.0    0.0
#> 99     99           0.0          0.0          0.0          0.0     0.0    0.0
#> 100   100           0.0          0.0          0.0          0.0     0.0    0.0
#>     ppp250 ppp375 ppp500
#> 0     81.8   93.7   99.0
#> 1     81.8   93.7   99.0
#> 2     81.8   93.7   99.0
#> 3     81.8   93.7   99.0
#> 4     81.8   93.7   99.0
#> 5     77.8   92.0   97.4
#> 6     77.8   92.0   97.4
#> 7     77.8   92.0   97.4
#> 8     77.8   92.0   97.4
#> 9     77.8   92.0   97.4
#> 10    66.1   87.3   94.3
#> 11    66.1   87.3   94.3
#> 12    66.1   87.3   94.3
#> 13    66.1   87.3   94.3
#> 14    66.1   87.3   94.3
#> 15    49.0   76.0   90.3
#> 16    49.0   76.0   90.3
#> 17    49.0   76.0   90.3
#> 18    49.0   76.0   90.3
#> 19    49.0   76.0   90.3
#> 20    37.2   64.0   80.3
#> 21    37.2   64.0   80.3
#> 22    37.2   64.0   80.3
#> 23    37.2   64.0   80.3
#> 24    37.2   64.0   80.3
#> 25    23.9   47.6   67.5
#> 26    23.9   47.6   67.5
#> 27    23.9   47.6   67.5
#> 28    23.9   47.6   67.5
#> 29    23.9   47.6   67.5
#> 30    15.4   33.4   53.3
#> 31    15.4   33.4   53.3
#> 32    15.4   33.4   53.3
#> 33    15.4   33.4   53.3
#> 34    15.4   33.4   53.3
#> 35     8.6   19.7   37.2
#> 36     8.6   19.7   37.2
#> 37     8.6   19.7   37.2
#> 38     8.6   19.7   37.2
#> 39     8.6   19.7   37.2
#> 40     5.2   12.0   26.0
#> 41     5.2   12.0   26.0
#> 42     5.2   12.0   26.0
#> 43     5.2   12.0   26.0
#> 44     5.2   12.0   26.0
#> 45     3.2    7.8   20.1
#> 46     3.2    7.8   20.1
#> 47     3.2    7.8   20.1
#> 48     3.2    7.8   20.1
#> 49     3.2    7.8   20.1
#> 50     2.1    4.0   10.6
#> 51     2.1    4.0   10.6
#> 52     2.1    4.0   10.6
#> 53     2.1    4.0   10.6
#> 54     2.1    4.0   10.6
#> 55     1.2    2.0    5.6
#> 56     1.2    2.0    5.6
#> 57     1.2    2.0    5.6
#> 58     1.2    2.0    5.6
#> 59     1.2    2.0    5.6
#> 60     1.2    1.5    3.8
#> 61     1.2    1.5    3.8
#> 62     1.2    1.5    3.8
#> 63     1.2    1.5    3.8
#> 64     1.2    1.5    3.8
#> 65     0.4    0.7    1.8
#> 66     0.4    0.7    1.8
#> 67     0.4    0.7    1.8
#> 68     0.4    0.7    1.8
#> 69     0.4    0.7    1.8
#> 70     0.6    0.8    1.3
#> 71     0.6    0.8    1.3
#> 72     0.6    0.8    1.3
#> 73     0.6    0.8    1.3
#> 74     0.6    0.8    1.3
#> 75     0.0    0.1    0.1
#> 76     0.0    0.1    0.1
#> 77     0.0    0.1    0.1
#> 78     0.0    0.1    0.1
#> 79     0.0    0.1    0.1
#> 80     0.0    0.0    0.3
#> 81     0.0    0.0    0.3
#> 82     0.0    0.0    0.3
#> 83     0.0    0.0    0.3
#> 84     0.0    0.0    0.3
#> 85     0.0    0.0    0.0
#> 86     0.0    0.0    0.0
#> 87     0.0    0.0    0.0
#> 88     0.0    0.0    0.0
#> 89     0.0    0.0    0.0
#> 90     0.0    0.0    0.0
#> 91     0.0    0.0    0.0
#> 92     0.0    0.0    0.0
#> 93     0.0    0.0    0.0
#> 94     0.0    0.0    0.0
#> 95     0.0    0.0    0.0
#> 96     0.0    0.0    0.0
#> 97     0.0    0.0    0.0
#> 98     0.0    0.0    0.0
#> 99     0.0    0.0    0.0
#> 100    0.0    0.0    0.0

  # Given a specific PPI score (from 0 - 100), get the row of poverty
  # probabilities from PPI table it corresponds to
  ppiScore <- 50
  ppiBRA2010[ppiBRA2010$score == ppiScore, ]
#>    score belowHalfWage belowQtrWage belowOneWage belowTwoWage extreme ppp125
#> 50    50           6.9          1.7         35.6         82.1     2.1    1.5
#>    ppp250 ppp375 ppp500
#> 50    2.1      4   10.6

  # Use subset() function to get the row of poverty probabilities corresponding
  # to specific PPI score
  ppiScore <- 50
  subset(ppiBRA2010, score == ppiScore)
#>    score belowHalfWage belowQtrWage belowOneWage belowTwoWage extreme ppp125
#> 50    50           6.9          1.7         35.6         82.1     2.1    1.5
#>    ppp250 ppp375 ppp500
#> 50    2.1      4   10.6

  # Given a specific PPI score (from 0 - 100), get a poverty probability
  # based on a specific poverty definition. In this example, the USAID
  # extreme poverty definition
  ppiScore <- 50
  ppiBRA2010[ppiBRA2010$score == ppiScore, "extreme"]
#> [1] 2.1