Poverty Probability Index (PPI) lookup table for Brazil
Format
A data frame with 10 columns and 101 rows:
score
PPI score
belowHalfWage
Below the half minimum wage line
belowQtrWage
Below the quarter minimum wage line
belowOneWage
Below the one minimum wage line
belowTwoWage
Below the two minimum wage line
extreme
USAID extreme poverty
ppp125
Below $1.25 per day purchasing power parity (2005)
ppp250
Below $2.50 per day purchasing power parity (2005)
ppp375
Below $3.75 per day purchasing power parity (2005)
ppp500
Below $5.00 per day purchasing power parity (2005)
Examples
# Access Brazil PPI table
ppiBRA2010
#> score belowHalfWage belowQtrWage belowOneWage belowTwoWage extreme ppp125
#> 0 0 95.0 71.7 99.5 100.0 80.2 46.4
#> 1 1 95.0 71.7 99.5 100.0 80.2 46.4
#> 2 2 95.0 71.7 99.5 100.0 80.2 46.4
#> 3 3 95.0 71.7 99.5 100.0 80.2 46.4
#> 4 4 95.0 71.7 99.5 100.0 80.2 46.4
#> 5 5 93.4 65.4 99.6 100.0 77.2 34.2
#> 6 6 93.4 65.4 99.6 100.0 77.2 34.2
#> 7 7 93.4 65.4 99.6 100.0 77.2 34.2
#> 8 8 93.4 65.4 99.6 100.0 77.2 34.2
#> 9 9 93.4 65.4 99.6 100.0 77.2 34.2
#> 10 10 89.4 51.6 99.5 100.0 65.0 24.0
#> 11 11 89.4 51.6 99.5 100.0 65.0 24.0
#> 12 12 89.4 51.6 99.5 100.0 65.0 24.0
#> 13 13 89.4 51.6 99.5 100.0 65.0 24.0
#> 14 14 89.4 51.6 99.5 100.0 65.0 24.0
#> 15 15 81.1 35.0 98.5 99.9 47.0 14.0
#> 16 16 81.1 35.0 98.5 99.9 47.0 14.0
#> 17 17 81.1 35.0 98.5 99.9 47.0 14.0
#> 18 18 81.1 35.0 98.5 99.9 47.0 14.0
#> 19 19 81.1 35.0 98.5 99.9 47.0 14.0
#> 20 20 68.7 24.6 96.2 99.7 36.1 10.2
#> 21 21 68.7 24.6 96.2 99.7 36.1 10.2
#> 22 22 68.7 24.6 96.2 99.7 36.1 10.2
#> 23 23 68.7 24.6 96.2 99.7 36.1 10.2
#> 24 24 68.7 24.6 96.2 99.7 36.1 10.2
#> 25 25 54.2 16.1 92.2 99.4 23.2 7.1
#> 26 26 54.2 16.1 92.2 99.4 23.2 7.1
#> 27 27 54.2 16.1 92.2 99.4 23.2 7.1
#> 28 28 54.2 16.1 92.2 99.4 23.2 7.1
#> 29 29 54.2 16.1 92.2 99.4 23.2 7.1
#> 30 30 41.1 10.5 85.0 98.7 15.2 4.6
#> 31 31 41.1 10.5 85.0 98.7 15.2 4.6
#> 32 32 41.1 10.5 85.0 98.7 15.2 4.6
#> 33 33 41.1 10.5 85.0 98.7 15.2 4.6
#> 34 34 41.1 10.5 85.0 98.7 15.2 4.6
#> 35 35 26.1 6.2 75.3 96.5 8.3 3.3
#> 36 36 26.1 6.2 75.3 96.5 8.3 3.3
#> 37 37 26.1 6.2 75.3 96.5 8.3 3.3
#> 38 38 26.1 6.2 75.3 96.5 8.3 3.3
#> 39 39 26.1 6.2 75.3 96.5 8.3 3.3
#> 40 40 17.4 3.9 61.8 93.7 5.1 2.0
#> 41 41 17.4 3.9 61.8 93.7 5.1 2.0
#> 42 42 17.4 3.9 61.8 93.7 5.1 2.0
#> 43 43 17.4 3.9 61.8 93.7 5.1 2.0
#> 44 44 17.4 3.9 61.8 93.7 5.1 2.0
#> 45 45 12.4 2.6 52.0 89.6 3.1 1.9
#> 46 46 12.4 2.6 52.0 89.6 3.1 1.9
#> 47 47 12.4 2.6 52.0 89.6 3.1 1.9
#> 48 48 12.4 2.6 52.0 89.6 3.1 1.9
#> 49 49 12.4 2.6 52.0 89.6 3.1 1.9
#> 50 50 6.9 1.7 35.6 82.1 2.1 1.5
#> 51 51 6.9 1.7 35.6 82.1 2.1 1.5
#> 52 52 6.9 1.7 35.6 82.1 2.1 1.5
#> 53 53 6.9 1.7 35.6 82.1 2.1 1.5
#> 54 54 6.9 1.7 35.6 82.1 2.1 1.5
#> 55 55 3.4 1.2 24.4 69.4 1.2 1.0
#> 56 56 3.4 1.2 24.4 69.4 1.2 1.0
#> 57 57 3.4 1.2 24.4 69.4 1.2 1.0
#> 58 58 3.4 1.2 24.4 69.4 1.2 1.0
#> 59 59 3.4 1.2 24.4 69.4 1.2 1.0
#> 60 60 2.1 1.1 15.4 58.8 1.2 1.1
#> 61 61 2.1 1.1 15.4 58.8 1.2 1.1
#> 62 62 2.1 1.1 15.4 58.8 1.2 1.1
#> 63 63 2.1 1.1 15.4 58.8 1.2 1.1
#> 64 64 2.1 1.1 15.4 58.8 1.2 1.1
#> 65 65 1.0 0.4 8.9 42.9 0.4 0.4
#> 66 66 1.0 0.4 8.9 42.9 0.4 0.4
#> 67 67 1.0 0.4 8.9 42.9 0.4 0.4
#> 68 68 1.0 0.4 8.9 42.9 0.4 0.4
#> 69 69 1.0 0.4 8.9 42.9 0.4 0.4
#> 70 70 1.1 0.6 3.9 29.8 0.6 0.6
#> 71 71 1.1 0.6 3.9 29.8 0.6 0.6
#> 72 72 1.1 0.6 3.9 29.8 0.6 0.6
#> 73 73 1.1 0.6 3.9 29.8 0.6 0.6
#> 74 74 1.1 0.6 3.9 29.8 0.6 0.6
#> 75 75 0.1 0.0 1.4 19.4 0.0 0.0
#> 76 76 0.1 0.0 1.4 19.4 0.0 0.0
#> 77 77 0.1 0.0 1.4 19.4 0.0 0.0
#> 78 78 0.1 0.0 1.4 19.4 0.0 0.0
#> 79 79 0.1 0.0 1.4 19.4 0.0 0.0
#> 80 80 0.1 0.0 0.8 10.3 0.0 0.0
#> 81 81 0.1 0.0 0.8 10.3 0.0 0.0
#> 82 82 0.1 0.0 0.8 10.3 0.0 0.0
#> 83 83 0.1 0.0 0.8 10.3 0.0 0.0
#> 84 84 0.1 0.0 0.8 10.3 0.0 0.0
#> 85 85 0.0 0.0 1.4 7.5 0.0 0.0
#> 86 86 0.0 0.0 1.4 7.5 0.0 0.0
#> 87 87 0.0 0.0 1.4 7.5 0.0 0.0
#> 88 88 0.0 0.0 1.4 7.5 0.0 0.0
#> 89 89 0.0 0.0 1.4 7.5 0.0 0.0
#> 90 90 0.0 0.0 0.0 5.7 0.0 0.0
#> 91 91 0.0 0.0 0.0 5.7 0.0 0.0
#> 92 92 0.0 0.0 0.0 5.7 0.0 0.0
#> 93 93 0.0 0.0 0.0 5.7 0.0 0.0
#> 94 94 0.0 0.0 0.0 5.7 0.0 0.0
#> 95 95 0.0 0.0 0.0 0.0 0.0 0.0
#> 96 96 0.0 0.0 0.0 0.0 0.0 0.0
#> 97 97 0.0 0.0 0.0 0.0 0.0 0.0
#> 98 98 0.0 0.0 0.0 0.0 0.0 0.0
#> 99 99 0.0 0.0 0.0 0.0 0.0 0.0
#> 100 100 0.0 0.0 0.0 0.0 0.0 0.0
#> ppp250 ppp375 ppp500
#> 0 81.8 93.7 99.0
#> 1 81.8 93.7 99.0
#> 2 81.8 93.7 99.0
#> 3 81.8 93.7 99.0
#> 4 81.8 93.7 99.0
#> 5 77.8 92.0 97.4
#> 6 77.8 92.0 97.4
#> 7 77.8 92.0 97.4
#> 8 77.8 92.0 97.4
#> 9 77.8 92.0 97.4
#> 10 66.1 87.3 94.3
#> 11 66.1 87.3 94.3
#> 12 66.1 87.3 94.3
#> 13 66.1 87.3 94.3
#> 14 66.1 87.3 94.3
#> 15 49.0 76.0 90.3
#> 16 49.0 76.0 90.3
#> 17 49.0 76.0 90.3
#> 18 49.0 76.0 90.3
#> 19 49.0 76.0 90.3
#> 20 37.2 64.0 80.3
#> 21 37.2 64.0 80.3
#> 22 37.2 64.0 80.3
#> 23 37.2 64.0 80.3
#> 24 37.2 64.0 80.3
#> 25 23.9 47.6 67.5
#> 26 23.9 47.6 67.5
#> 27 23.9 47.6 67.5
#> 28 23.9 47.6 67.5
#> 29 23.9 47.6 67.5
#> 30 15.4 33.4 53.3
#> 31 15.4 33.4 53.3
#> 32 15.4 33.4 53.3
#> 33 15.4 33.4 53.3
#> 34 15.4 33.4 53.3
#> 35 8.6 19.7 37.2
#> 36 8.6 19.7 37.2
#> 37 8.6 19.7 37.2
#> 38 8.6 19.7 37.2
#> 39 8.6 19.7 37.2
#> 40 5.2 12.0 26.0
#> 41 5.2 12.0 26.0
#> 42 5.2 12.0 26.0
#> 43 5.2 12.0 26.0
#> 44 5.2 12.0 26.0
#> 45 3.2 7.8 20.1
#> 46 3.2 7.8 20.1
#> 47 3.2 7.8 20.1
#> 48 3.2 7.8 20.1
#> 49 3.2 7.8 20.1
#> 50 2.1 4.0 10.6
#> 51 2.1 4.0 10.6
#> 52 2.1 4.0 10.6
#> 53 2.1 4.0 10.6
#> 54 2.1 4.0 10.6
#> 55 1.2 2.0 5.6
#> 56 1.2 2.0 5.6
#> 57 1.2 2.0 5.6
#> 58 1.2 2.0 5.6
#> 59 1.2 2.0 5.6
#> 60 1.2 1.5 3.8
#> 61 1.2 1.5 3.8
#> 62 1.2 1.5 3.8
#> 63 1.2 1.5 3.8
#> 64 1.2 1.5 3.8
#> 65 0.4 0.7 1.8
#> 66 0.4 0.7 1.8
#> 67 0.4 0.7 1.8
#> 68 0.4 0.7 1.8
#> 69 0.4 0.7 1.8
#> 70 0.6 0.8 1.3
#> 71 0.6 0.8 1.3
#> 72 0.6 0.8 1.3
#> 73 0.6 0.8 1.3
#> 74 0.6 0.8 1.3
#> 75 0.0 0.1 0.1
#> 76 0.0 0.1 0.1
#> 77 0.0 0.1 0.1
#> 78 0.0 0.1 0.1
#> 79 0.0 0.1 0.1
#> 80 0.0 0.0 0.3
#> 81 0.0 0.0 0.3
#> 82 0.0 0.0 0.3
#> 83 0.0 0.0 0.3
#> 84 0.0 0.0 0.3
#> 85 0.0 0.0 0.0
#> 86 0.0 0.0 0.0
#> 87 0.0 0.0 0.0
#> 88 0.0 0.0 0.0
#> 89 0.0 0.0 0.0
#> 90 0.0 0.0 0.0
#> 91 0.0 0.0 0.0
#> 92 0.0 0.0 0.0
#> 93 0.0 0.0 0.0
#> 94 0.0 0.0 0.0
#> 95 0.0 0.0 0.0
#> 96 0.0 0.0 0.0
#> 97 0.0 0.0 0.0
#> 98 0.0 0.0 0.0
#> 99 0.0 0.0 0.0
#> 100 0.0 0.0 0.0
# Given a specific PPI score (from 0 - 100), get the row of poverty
# probabilities from PPI table it corresponds to
ppiScore <- 50
ppiBRA2010[ppiBRA2010$score == ppiScore, ]
#> score belowHalfWage belowQtrWage belowOneWage belowTwoWage extreme ppp125
#> 50 50 6.9 1.7 35.6 82.1 2.1 1.5
#> ppp250 ppp375 ppp500
#> 50 2.1 4 10.6
# Use subset() function to get the row of poverty probabilities corresponding
# to specific PPI score
ppiScore <- 50
subset(ppiBRA2010, score == ppiScore)
#> score belowHalfWage belowQtrWage belowOneWage belowTwoWage extreme ppp125
#> 50 50 6.9 1.7 35.6 82.1 2.1 1.5
#> ppp250 ppp375 ppp500
#> 50 2.1 4 10.6
# Given a specific PPI score (from 0 - 100), get a poverty probability
# based on a specific poverty definition. In this example, the USAID
# extreme poverty definition
ppiScore <- 50
ppiBRA2010[ppiBRA2010$score == ppiScore, "extreme"]
#> [1] 2.1