Skip to contents

Poverty Probability Index (PPI) lookup table for Bangladesh

Usage

ppiBGD2013

Format

A data frame with 10 columns and 101 rows:

score

PPI score

nl

National lower poverty line

nu100

National upper poverty line (100%)

nu150

National upper poverty line (150%)

nu200

National upper poverty line (200%)

extreme

USAID extreme poverty

ppp125

Below $1.25 per day purchasing power parity (2005)

ppp175

Below $1.75 per day purchasing power parity (2005)

ppp200

Below $2.00 per day purchasing power parity (2005)

ppp250

Below $2.50 per day purchasing power parity (2005)

Examples

  # Access Bangladesh PPI table
  ppiBGD2013
#>     score   nl nu100 nu150 nu200 extreme ppp125 ppp175 ppp200 ppp250
#> 0       0 76.2  87.3  98.4 100.0    65.8   97.9   98.8  100.0  100.0
#> 1       1 76.2  87.3  98.4 100.0    65.8   97.9   98.8  100.0  100.0
#> 2       2 76.2  87.3  98.4 100.0    65.8   97.9   98.8  100.0  100.0
#> 3       3 76.2  87.3  98.4 100.0    65.8   97.9   98.8  100.0  100.0
#> 4       4 76.2  87.3  98.4 100.0    65.8   97.9   98.8  100.0  100.0
#> 5       5 70.6  84.6  97.7  99.5    65.6   89.3   98.2   98.7   99.7
#> 6       6 70.6  84.6  97.7  99.5    65.6   89.3   98.2   98.7   99.7
#> 7       7 70.6  84.6  97.7  99.5    65.6   89.3   98.2   98.7   99.7
#> 8       8 70.6  84.6  97.7  99.5    65.6   89.3   98.2   98.7   99.7
#> 9       9 70.6  84.6  97.7  99.5    65.6   89.3   98.2   98.7   99.7
#> 10     10 63.6  82.1  97.6  99.5    57.2   88.8   98.2   98.7   99.7
#> 11     11 63.6  82.1  97.6  99.5    57.2   88.8   98.2   98.7   99.7
#> 12     12 63.6  82.1  97.6  99.5    57.2   88.8   98.2   98.7   99.7
#> 13     13 63.6  82.1  97.6  99.5    57.2   88.8   98.2   98.7   99.7
#> 14     14 63.6  82.1  97.6  99.5    57.2   88.8   98.2   98.7   99.7
#> 15     15 46.4  68.0  96.2  99.5    42.5   81.6   96.9   98.6   99.7
#> 16     16 46.4  68.0  96.2  99.5    42.5   81.6   96.9   98.6   99.7
#> 17     17 46.4  68.0  96.2  99.5    42.5   81.6   96.9   98.6   99.7
#> 18     18 46.4  68.0  96.2  99.5    42.5   81.6   96.9   98.6   99.7
#> 19     19 46.4  68.0  96.2  99.5    42.5   81.6   96.9   98.6   99.7
#> 20     20 37.1  62.7  96.1  99.5    32.7   78.0   96.3   98.4   99.7
#> 21     21 37.1  62.7  96.1  99.5    32.7   78.0   96.3   98.4   99.7
#> 22     22 37.1  62.7  96.1  99.5    32.7   78.0   96.3   98.4   99.7
#> 23     23 37.1  62.7  96.1  99.5    32.7   78.0   96.3   98.4   99.7
#> 24     24 37.1  62.7  96.1  99.5    32.7   78.0   96.3   98.4   99.7
#> 25     25 26.6  50.4  88.7  97.9    22.9   65.8   91.6   95.3   98.7
#> 26     26 26.6  50.4  88.7  97.9    22.9   65.8   91.6   95.3   98.7
#> 27     27 26.6  50.4  88.7  97.9    22.9   65.8   91.6   95.3   98.7
#> 28     28 26.6  50.4  88.7  97.9    22.9   65.8   91.6   95.3   98.7
#> 29     29 26.6  50.4  88.7  97.9    22.9   65.8   91.6   95.3   98.7
#> 30     30 19.1  40.9  84.3  96.0    16.9   57.0   87.9   93.5   98.2
#> 31     31 19.1  40.9  84.3  96.0    16.9   57.0   87.9   93.5   98.2
#> 32     32 19.1  40.9  84.3  96.0    16.9   57.0   87.9   93.5   98.2
#> 33     33 19.1  40.9  84.3  96.0    16.9   57.0   87.9   93.5   98.2
#> 34     34 19.1  40.9  84.3  96.0    16.9   57.0   87.9   93.5   98.2
#> 35     35 15.0  36.0  80.8  93.6    13.8   50.3   83.6   90.7   96.9
#> 36     36 15.0  36.0  80.8  93.6    13.8   50.3   83.6   90.7   96.9
#> 37     37 15.0  36.0  80.8  93.6    13.8   50.3   83.6   90.7   96.9
#> 38     38 15.0  36.0  80.8  93.6    13.8   50.3   83.6   90.7   96.9
#> 39     39 15.0  36.0  80.8  93.6    13.8   50.3   83.6   90.7   96.9
#> 40     40 12.7  26.7  76.1  91.9    11.1   40.8   79.6   87.4   94.9
#> 41     41 12.7  26.7  76.1  91.9    11.1   40.8   79.6   87.4   94.9
#> 42     42 12.7  26.7  76.1  91.9    11.1   40.8   79.6   87.4   94.9
#> 43     43 12.7  26.7  76.1  91.9    11.1   40.8   79.6   87.4   94.9
#> 44     44 12.7  26.7  76.1  91.9    11.1   40.8   79.6   87.4   94.9
#> 45     45  6.6  19.6  65.8  86.6     5.4   33.5   68.8   79.6   91.5
#> 46     46  6.6  19.6  65.8  86.6     5.4   33.5   68.8   79.6   91.5
#> 47     47  6.6  19.6  65.8  86.6     5.4   33.5   68.8   79.6   91.5
#> 48     48  6.6  19.6  65.8  86.6     5.4   33.5   68.8   79.6   91.5
#> 49     49  6.6  19.6  65.8  86.6     5.4   33.5   68.8   79.6   91.5
#> 50     50  3.9  14.7  55.0  81.3     4.5   24.2   60.3   74.2   87.9
#> 51     51  3.9  14.7  55.0  81.3     4.5   24.2   60.3   74.2   87.9
#> 52     52  3.9  14.7  55.0  81.3     4.5   24.2   60.3   74.2   87.9
#> 53     53  3.9  14.7  55.0  81.3     4.5   24.2   60.3   74.2   87.9
#> 54     54  3.9  14.7  55.0  81.3     4.5   24.2   60.3   74.2   87.9
#> 55     55  1.5   7.1  42.6  75.6     1.8   14.5   50.4   65.2   84.3
#> 56     56  1.5   7.1  42.6  75.6     1.8   14.5   50.4   65.2   84.3
#> 57     57  1.5   7.1  42.6  75.6     1.8   14.5   50.4   65.2   84.3
#> 58     58  1.5   7.1  42.6  75.6     1.8   14.5   50.4   65.2   84.3
#> 59     59  1.5   7.1  42.6  75.6     1.8   14.5   50.4   65.2   84.3
#> 60     60  0.9   5.3  34.8  64.9     1.0   10.9   40.4   54.6   73.2
#> 61     61  0.9   5.3  34.8  64.9     1.0   10.9   40.4   54.6   73.2
#> 62     62  0.9   5.3  34.8  64.9     1.0   10.9   40.4   54.6   73.2
#> 63     63  0.9   5.3  34.8  64.9     1.0   10.9   40.4   54.6   73.2
#> 64     64  0.9   5.3  34.8  64.9     1.0   10.9   40.4   54.6   73.2
#> 65     65  0.4   4.4  28.6  52.5     0.1    8.7   32.2   44.5   63.3
#> 66     66  0.4   4.4  28.6  52.5     0.1    8.7   32.2   44.5   63.3
#> 67     67  0.4   4.4  28.6  52.5     0.1    8.7   32.2   44.5   63.3
#> 68     68  0.4   4.4  28.6  52.5     0.1    8.7   32.2   44.5   63.3
#> 69     69  0.4   4.4  28.6  52.5     0.1    8.7   32.2   44.5   63.3
#> 70     70  0.2   2.3  24.6  51.0     0.0    5.6   31.5   42.9   60.4
#> 71     71  0.2   2.3  24.6  51.0     0.0    5.6   31.5   42.9   60.4
#> 72     72  0.2   2.3  24.6  51.0     0.0    5.6   31.5   42.9   60.4
#> 73     73  0.2   2.3  24.6  51.0     0.0    5.6   31.5   42.9   60.4
#> 74     74  0.2   2.3  24.6  51.0     0.0    5.6   31.5   42.9   60.4
#> 75     75  0.0   1.2  21.4  40.3     0.0    4.3   25.8   34.0   50.7
#> 76     76  0.0   1.2  21.4  40.3     0.0    4.3   25.8   34.0   50.7
#> 77     77  0.0   1.2  21.4  40.3     0.0    4.3   25.8   34.0   50.7
#> 78     78  0.0   1.2  21.4  40.3     0.0    4.3   25.8   34.0   50.7
#> 79     79  0.0   1.2  21.4  40.3     0.0    4.3   25.8   34.0   50.7
#> 80     80  0.0   0.5  17.0  32.0     0.0    2.7   19.7   26.7   40.9
#> 81     81  0.0   0.5  17.0  32.0     0.0    2.7   19.7   26.7   40.9
#> 82     82  0.0   0.5  17.0  32.0     0.0    2.7   19.7   26.7   40.9
#> 83     83  0.0   0.5  17.0  32.0     0.0    2.7   19.7   26.7   40.9
#> 84     84  0.0   0.5  17.0  32.0     0.0    2.7   19.7   26.7   40.9
#> 85     85  0.0   0.0   8.3  24.9     0.0    0.0   10.7   14.6   33.3
#> 86     86  0.0   0.0   8.3  24.9     0.0    0.0   10.7   14.6   33.3
#> 87     87  0.0   0.0   8.3  24.9     0.0    0.0   10.7   14.6   33.3
#> 88     88  0.0   0.0   8.3  24.9     0.0    0.0   10.7   14.6   33.3
#> 89     89  0.0   0.0   8.3  24.9     0.0    0.0   10.7   14.6   33.3
#> 90     90  0.0   0.0   3.9   9.9     0.0    0.0    5.1    6.6   12.3
#> 91     91  0.0   0.0   3.9   9.9     0.0    0.0    5.1    6.6   12.3
#> 92     92  0.0   0.0   3.9   9.9     0.0    0.0    5.1    6.6   12.3
#> 93     93  0.0   0.0   3.9   9.9     0.0    0.0    5.1    6.6   12.3
#> 94     94  0.0   0.0   3.9   9.9     0.0    0.0    5.1    6.6   12.3
#> 95     95  0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 96     96  0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 97     97  0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 98     98  0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 99     99  0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0
#> 100   100  0.0   0.0   0.0   0.0     0.0    0.0    0.0    0.0    0.0

  # Given a specific PPI score (from 0 - 100), get the row of poverty
  # probabilities from PPI table it corresponds to
  ppiScore <- 50
  ppiBGD2013[ppiBGD2013$score == ppiScore, ]
#>    score  nl nu100 nu150 nu200 extreme ppp125 ppp175 ppp200 ppp250
#> 50    50 3.9  14.7    55  81.3     4.5   24.2   60.3   74.2   87.9

  # Use subset() function to get the row of poverty probabilities corresponding
  # to specific PPI score
  ppiScore <- 50
  subset(ppiBGD2013, score == ppiScore)
#>    score  nl nu100 nu150 nu200 extreme ppp125 ppp175 ppp200 ppp250
#> 50    50 3.9  14.7    55  81.3     4.5   24.2   60.3   74.2   87.9

  # Given a specific PPI score (from 0 - 100), get a poverty probability
  # based on a specific poverty definition. In this example, the USAID
  # extreme poverty definition
  ppiScore <- 50
  ppiBGD2013[ppiBGD2013$score == ppiScore, "extreme"]
#> [1] 4.5