
Poverty Probability Index (PPI) lookup table for Burkina Faso
Source:R/00_burkina_faso.R
ppiBFA2017.RdPoverty Probability Index (PPI) lookup table for Burkina Faso
Format
A data frame with 15 columns and 101 rows:
scorePPI score
nl100National poverty line (100%)
nl150National poverty line (150%)
nl200National poverty line (200%)
ppp125Below $1.25 per day purchasing power parity (2005)
ppp250Below $2.50 per day purchasing power parity (2005)
ppp500Below $5.00 per day purchasing power parity (2005)
ppp100Below $1.00 per day purchasing power parity (2011)
ppp190Below $1.90 per day purchasing power parity (2011)
ppp320Below $3.20 per day purchasing power parity (2011)
ppp550Below $5.50 per day purchasing power parity (2011)
percentile20Below 20th percentile poverty line
percentile40Below 40th percentile poverty line
percentile60Below 60th percentile poverty line
percentile80Below 80th percentile poverty line
Examples
# Access Burkina Faso PPI table
ppiBFA2017
#> score nl100 nl150 nl200 ppp125 ppp250 ppp500 ppp100 ppp190 ppp320 ppp550
#> 1 0 97.5 99.6 99.9 94.5 99.7 100.0 56.1 98.1 99.8 100.0
#> 2 1 97.2 99.5 99.9 93.8 99.6 100.0 53.0 97.8 99.7 100.0
#> 3 2 96.8 99.4 99.9 93.1 99.5 100.0 49.8 97.6 99.7 100.0
#> 4 3 96.5 99.4 99.8 92.3 99.5 100.0 46.7 97.3 99.6 100.0
#> 5 4 96.0 99.3 99.8 91.3 99.4 100.0 43.5 96.9 99.6 100.0
#> 6 5 95.6 99.2 99.8 90.3 99.3 100.0 40.5 96.5 99.5 100.0
#> 7 6 95.0 99.1 99.7 89.2 99.2 100.0 37.5 96.1 99.5 100.0
#> 8 7 94.4 98.9 99.7 88.0 99.1 100.0 34.6 95.6 99.4 100.0
#> 9 8 93.8 98.8 99.7 86.6 98.9 100.0 31.8 95.1 99.3 99.9
#> 10 9 93.0 98.6 99.6 85.1 98.8 100.0 29.1 94.5 99.2 99.9
#> 11 10 92.2 98.4 99.6 83.5 98.6 100.0 26.6 93.9 99.1 99.9
#> 12 11 91.4 98.1 99.5 81.8 98.4 100.0 24.2 93.2 98.9 99.9
#> 13 12 90.4 97.9 99.4 79.9 98.1 100.0 21.9 92.4 98.8 99.9
#> 14 13 89.3 97.6 99.3 77.9 97.9 99.9 19.8 91.5 98.6 99.9
#> 15 14 88.1 97.2 99.2 75.7 97.5 99.9 17.9 90.5 98.4 99.9
#> 16 15 86.8 96.9 99.1 73.4 97.2 99.9 16.1 89.4 98.1 99.9
#> 17 16 85.4 96.4 99.0 70.9 96.7 99.9 14.5 88.2 97.9 99.8
#> 18 17 83.9 95.9 98.8 68.3 96.3 99.9 13.0 86.9 97.5 99.8
#> 19 18 82.2 95.4 98.7 65.6 95.7 99.9 11.6 85.5 97.2 99.8
#> 20 19 80.4 94.7 98.5 62.8 95.1 99.9 10.4 83.9 96.8 99.8
#> 21 20 78.5 94.0 98.3 59.9 94.4 99.9 9.3 82.3 96.3 99.7
#> 22 21 76.4 93.2 98.0 57.0 93.6 99.8 8.3 80.4 95.8 99.7
#> 23 22 74.2 92.3 97.7 54.0 92.7 99.8 7.4 78.5 95.2 99.6
#> 24 23 71.9 91.3 97.4 50.9 91.7 99.8 6.6 76.4 94.5 99.6
#> 25 24 69.5 90.1 97.0 47.9 90.5 99.7 5.8 74.2 93.7 99.5
#> 26 25 66.9 88.8 96.6 44.8 89.2 99.7 5.2 71.8 92.9 99.5
#> 27 26 64.2 87.4 96.1 41.9 87.8 99.7 4.6 69.3 91.9 99.4
#> 28 27 61.5 85.8 95.6 38.9 86.2 99.6 4.1 66.7 90.8 99.3
#> 29 28 58.6 84.1 95.0 36.1 84.4 99.5 3.6 64.0 89.5 99.2
#> 30 29 55.8 82.2 94.3 33.3 82.4 99.5 3.2 61.2 88.2 99.1
#> 31 30 52.8 80.2 93.5 30.6 80.2 99.4 2.8 58.3 86.6 98.9
#> 32 31 49.9 77.9 92.6 28.1 77.9 99.3 2.5 55.4 84.9 98.8
#> 33 32 46.9 75.5 91.6 25.7 75.3 99.2 2.2 52.4 83.0 98.6
#> 34 33 44.0 72.9 90.5 23.5 72.6 99.1 1.9 49.4 81.0 98.4
#> 35 34 41.1 70.2 89.2 21.3 69.7 99.0 1.7 46.4 78.7 98.2
#> 36 35 38.3 67.2 87.9 19.4 66.6 98.8 1.5 43.5 76.3 97.9
#> 37 36 35.5 64.2 86.3 17.5 63.3 98.6 1.3 40.6 73.7 97.6
#> 38 37 32.9 61.0 84.6 15.8 60.0 98.4 1.2 37.7 70.9 97.2
#> 39 38 30.3 57.8 82.7 14.3 56.5 98.2 1.0 34.9 68.0 96.8
#> 40 39 27.9 54.4 80.7 12.8 53.0 98.0 0.9 32.3 64.8 96.4
#> 41 40 25.6 51.0 78.4 11.5 49.4 97.7 0.8 29.7 61.6 95.9
#> 42 41 23.4 47.7 76.0 10.4 45.9 97.3 0.7 27.3 58.3 95.3
#> 43 42 21.3 44.3 73.4 9.3 42.4 96.9 0.6 25.0 54.8 94.6
#> 44 43 19.4 41.0 70.7 8.3 39.0 96.5 0.6 22.8 51.4 93.9
#> 45 44 17.6 37.8 67.8 7.4 35.6 96.0 0.5 20.8 47.9 93.0
#> 46 45 16.0 34.6 64.7 6.6 32.4 95.4 0.4 18.9 44.4 92.1
#> 47 46 14.5 31.6 61.5 5.9 29.4 94.8 0.4 17.1 41.0 91.0
#> 48 47 13.1 28.8 58.2 5.3 26.5 94.0 0.3 15.5 37.7 89.8
#> 49 48 11.8 26.1 54.8 4.7 23.9 93.2 0.3 14.0 34.5 88.4
#> 50 49 10.6 23.6 51.4 4.2 21.4 92.3 0.3 12.6 31.4 87.0
#> 51 50 9.5 21.2 48.0 3.7 19.1 91.2 0.2 11.3 28.5 85.3
#> 52 51 8.6 19.0 44.5 3.3 17.0 90.0 0.2 10.2 25.7 83.5
#> 53 52 7.7 17.0 41.2 2.9 15.1 88.7 0.2 9.1 23.1 81.5
#> 54 53 6.9 15.2 37.9 2.6 13.3 87.2 0.2 8.2 20.7 79.3
#> 55 54 6.2 13.5 34.7 2.3 11.8 85.6 0.1 7.3 18.5 76.9
#> 56 55 5.5 12.0 31.7 2.1 10.4 83.8 0.1 6.6 16.5 74.4
#> 57 56 4.9 10.7 28.8 1.8 9.1 81.8 0.1 5.9 14.7 71.7
#> 58 57 4.4 9.4 26.1 1.6 8.0 79.7 0.1 5.2 13.0 68.8
#> 59 58 3.9 8.3 23.5 1.4 7.0 77.3 0.1 4.7 11.5 65.7
#> 60 59 3.5 7.4 21.1 1.3 6.1 74.8 0.1 4.2 10.2 62.6
#> 61 60 3.1 6.5 18.9 1.1 5.4 72.1 0.1 3.7 9.0 59.3
#> 62 61 2.8 5.7 16.9 1.0 4.7 69.2 0.1 3.3 7.9 55.9
#> 63 62 2.5 5.0 15.1 0.9 4.1 66.2 0.1 2.9 6.9 52.4
#> 64 63 2.2 4.4 13.4 0.8 3.6 63.0 0.0 2.6 6.1 49.0
#> 65 64 2.0 3.9 11.9 0.7 3.1 59.7 0.0 2.3 5.3 45.5
#> 66 65 1.8 3.4 10.5 0.6 2.7 56.3 0.0 2.1 4.7 42.1
#> 67 66 1.6 3.0 9.3 0.5 2.4 52.9 0.0 1.8 4.1 38.8
#> 68 67 1.4 2.6 8.2 0.5 2.1 49.4 0.0 1.6 3.6 35.6
#> 69 68 1.2 2.3 7.2 0.4 1.8 45.9 0.0 1.5 3.1 32.5
#> 70 69 1.1 2.0 6.3 0.4 1.6 42.5 0.0 1.3 2.7 29.5
#> 71 70 1.0 1.8 5.6 0.3 1.4 39.1 0.0 1.2 2.4 26.7
#> 72 71 0.9 1.5 4.9 0.3 1.2 35.9 0.0 1.0 2.1 24.1
#> 73 72 0.8 1.3 4.3 0.3 1.0 32.7 0.0 0.9 1.8 21.7
#> 74 73 0.7 1.2 3.8 0.2 0.9 29.8 0.0 0.8 1.6 19.4
#> 75 74 0.6 1.0 3.3 0.2 0.8 26.9 0.0 0.7 1.4 17.3
#> 76 75 0.5 0.9 2.9 0.2 0.7 24.3 0.0 0.6 1.2 15.4
#> 77 76 0.5 0.8 2.5 0.2 0.6 21.8 0.0 0.6 1.0 13.7
#> 78 77 0.4 0.7 2.2 0.1 0.5 19.5 0.0 0.5 0.9 12.2
#> 79 78 0.4 0.6 1.9 0.1 0.4 17.5 0.0 0.4 0.8 10.7
#> 80 79 0.3 0.5 1.7 0.1 0.4 15.5 0.0 0.4 0.7 9.5
#> 81 80 0.3 0.5 1.5 0.1 0.3 13.8 0.0 0.4 0.6 8.4
#> 82 81 0.3 0.4 1.3 0.1 0.3 12.2 0.0 0.3 0.5 7.4
#> 83 82 0.2 0.4 1.1 0.1 0.2 10.8 0.0 0.3 0.5 6.5
#> 84 83 0.2 0.3 1.0 0.1 0.2 9.5 0.0 0.2 0.4 5.7
#> 85 84 0.2 0.3 0.9 0.1 0.2 8.4 0.0 0.2 0.3 5.0
#> 86 85 0.2 0.2 0.7 0.1 0.2 7.4 0.0 0.2 0.3 4.4
#> 87 86 0.1 0.2 0.7 0.0 0.1 6.5 0.0 0.2 0.3 3.8
#> 88 87 0.1 0.2 0.6 0.0 0.1 5.7 0.0 0.2 0.2 3.3
#> 89 88 0.1 0.2 0.5 0.0 0.1 5.0 0.0 0.1 0.2 2.9
#> 90 89 0.1 0.1 0.4 0.0 0.1 4.4 0.0 0.1 0.2 2.6
#> 91 90 0.1 0.1 0.4 0.0 0.1 3.8 0.0 0.1 0.1 2.2
#> 92 91 0.1 0.1 0.3 0.0 0.1 3.4 0.0 0.1 0.1 2.0
#> 93 92 0.1 0.1 0.3 0.0 0.1 2.9 0.0 0.1 0.1 1.7
#> 94 93 0.1 0.1 0.3 0.0 0.1 2.6 0.0 0.1 0.1 1.5
#> 95 94 0.1 0.1 0.2 0.0 0.0 2.2 0.0 0.1 0.1 1.3
#> 96 95 0.1 0.1 0.2 0.0 0.0 1.9 0.0 0.1 0.1 1.1
#> 97 96 0.0 0.1 0.2 0.0 0.0 1.7 0.0 0.1 0.1 1.0
#> 98 97 0.0 0.0 0.1 0.0 0.0 1.5 0.0 0.0 0.1 0.9
#> 99 98 0.0 0.0 0.1 0.0 0.0 1.3 0.0 0.0 0.0 0.8
#> 100 99 0.0 0.0 0.1 0.0 0.0 1.1 0.0 0.0 0.0 0.7
#> 101 100 0.0 0.0 0.1 0.0 0.0 1.0 0.0 0.0 0.0 0.6
#> percentile20 percentile40 percentile60 percentile80
#> 1 90.3 97.4 99.2 99.9
#> 2 89.1 97.1 99.1 99.9
#> 3 87.8 96.8 99.0 99.8
#> 4 86.4 96.4 98.9 99.8
#> 5 84.8 96.0 98.7 99.8
#> 6 83.1 95.5 98.6 99.8
#> 7 81.3 95.0 98.4 99.7
#> 8 79.3 94.4 98.2 99.7
#> 9 77.1 93.7 97.9 99.6
#> 10 74.8 93.0 97.6 99.6
#> 11 72.3 92.2 97.3 99.5
#> 12 69.7 91.3 96.9 99.4
#> 13 67.0 90.3 96.5 99.4
#> 14 64.1 89.2 96.1 99.3
#> 15 61.2 88.1 95.6 99.2
#> 16 58.1 86.8 95.0 99.0
#> 17 55.0 85.4 94.3 98.9
#> 18 51.8 83.9 93.6 98.7
#> 19 48.7 82.2 92.8 98.5
#> 20 45.5 80.5 91.9 98.3
#> 21 42.4 78.6 90.8 98.1
#> 22 39.3 76.5 89.7 97.8
#> 23 36.4 74.4 88.4 97.5
#> 24 33.5 72.1 87.0 97.1
#> 25 30.7 69.7 85.5 96.7
#> 26 28.1 67.1 83.8 96.3
#> 27 25.6 64.5 82.0 95.7
#> 28 23.3 61.8 80.0 95.1
#> 29 21.1 59.0 77.9 94.5
#> 30 19.0 56.1 75.6 93.7
#> 31 17.2 53.2 73.1 92.8
#> 32 15.4 50.3 70.5 91.9
#> 33 13.9 47.4 67.7 90.8
#> 34 12.4 44.5 64.8 89.6
#> 35 11.1 41.6 61.8 88.2
#> 36 9.9 38.8 58.7 86.7
#> 37 8.8 36.1 55.5 85.0
#> 38 7.9 33.4 52.3 83.2
#> 39 7.0 30.9 49.1 81.2
#> 40 6.2 28.4 45.9 79.0
#> 41 5.5 26.1 42.7 76.6
#> 42 4.9 23.9 39.5 74.0
#> 43 4.3 21.9 36.5 71.3
#> 44 3.8 19.9 33.5 68.4
#> 45 3.4 18.1 30.7 65.4
#> 46 3.0 16.5 28.0 62.2
#> 47 2.7 14.9 25.5 58.9
#> 48 2.3 13.5 23.1 55.5
#> 49 2.1 12.2 20.9 52.1
#> 50 1.8 11.0 18.8 48.7
#> 51 1.6 9.9 16.9 45.3
#> 52 1.4 8.9 15.2 41.9
#> 53 1.3 8.0 13.6 38.6
#> 54 1.1 7.2 12.2 35.4
#> 55 1.0 6.4 10.8 32.3
#> 56 0.9 5.8 9.6 29.4
#> 57 0.8 5.2 8.6 26.6
#> 58 0.7 4.6 7.6 24.0
#> 59 0.6 4.1 6.8 21.6
#> 60 0.5 3.7 6.0 19.3
#> 61 0.5 3.3 5.3 17.3
#> 62 0.4 2.9 4.7 15.4
#> 63 0.4 2.6 4.1 13.7
#> 64 0.3 2.3 3.7 12.1
#> 65 0.3 2.1 3.2 10.7
#> 66 0.2 1.9 2.8 9.5
#> 67 0.2 1.7 2.5 8.4
#> 68 0.2 1.5 2.2 7.4
#> 69 0.2 1.3 1.9 6.5
#> 70 0.1 1.2 1.7 5.7
#> 71 0.1 1.0 1.5 5.0
#> 72 0.1 0.9 1.3 4.4
#> 73 0.1 0.8 1.2 3.9
#> 74 0.1 0.7 1.0 3.4
#> 75 0.1 0.7 0.9 3.0
#> 76 0.1 0.6 0.8 2.6
#> 77 0.1 0.5 0.7 2.3
#> 78 0.1 0.5 0.6 2.0
#> 79 0.0 0.4 0.5 1.7
#> 80 0.0 0.4 0.5 1.5
#> 81 0.0 0.3 0.4 1.3
#> 82 0.0 0.3 0.4 1.1
#> 83 0.0 0.3 0.3 1.0
#> 84 0.0 0.2 0.3 0.9
#> 85 0.0 0.2 0.2 0.8
#> 86 0.0 0.2 0.2 0.7
#> 87 0.0 0.2 0.2 0.6
#> 88 0.0 0.1 0.2 0.5
#> 89 0.0 0.1 0.1 0.4
#> 90 0.0 0.1 0.1 0.4
#> 91 0.0 0.1 0.1 0.3
#> 92 0.0 0.1 0.1 0.3
#> 93 0.0 0.1 0.1 0.3
#> 94 0.0 0.1 0.1 0.2
#> 95 0.0 0.1 0.1 0.2
#> 96 0.0 0.1 0.1 0.2
#> 97 0.0 0.1 0.1 0.1
#> 98 0.0 0.0 0.0 0.1
#> 99 0.0 0.0 0.0 0.1
#> 100 0.0 0.0 0.0 0.1
#> 101 0.0 0.0 0.0 0.1
# Given a specific PPI score (from 0 - 100), get the row of poverty
# probabilities from PPI table it corresponds to
ppiScore <- 50
ppiBFA2017[ppiBFA2017$score == ppiScore, ]
#> score nl100 nl150 nl200 ppp125 ppp250 ppp500 ppp100 ppp190 ppp320 ppp550
#> 51 50 9.5 21.2 48 3.7 19.1 91.2 0.2 11.3 28.5 85.3
#> percentile20 percentile40 percentile60 percentile80
#> 51 1.6 9.9 16.9 45.3
# Use subset() function to get the row of poverty probabilities corresponding
# to specific PPI score
ppiScore <- 50
subset(ppiBFA2017, score == ppiScore)
#> score nl100 nl150 nl200 ppp125 ppp250 ppp500 ppp100 ppp190 ppp320 ppp550
#> 51 50 9.5 21.2 48 3.7 19.1 91.2 0.2 11.3 28.5 85.3
#> percentile20 percentile40 percentile60 percentile80
#> 51 1.6 9.9 16.9 45.3
# Given a specific PPI score (from 0 - 100), get a poverty probability
# based on a specific poverty definition. In this example, the national
# poverty line definition
ppiScore <- 50
ppiBFA2017[ppiBFA2017$score == ppiScore, "nl100"]
#> [1] 9.5