Poverty Probability Index (PPI) lookup table for Burkina Faso
Source:R/00_burkina_faso.R
ppiBFA2017.Rd
Poverty Probability Index (PPI) lookup table for Burkina Faso
Format
A data frame with 15 columns and 101 rows:
score
PPI score
nl100
National poverty line (100%)
nl150
National poverty line (150%)
nl200
National poverty line (200%)
ppp125
Below $1.25 per day purchasing power parity (2005)
ppp250
Below $2.50 per day purchasing power parity (2005)
ppp500
Below $5.00 per day purchasing power parity (2005)
ppp100
Below $1.00 per day purchasing power parity (2011)
ppp190
Below $1.90 per day purchasing power parity (2011)
ppp320
Below $3.20 per day purchasing power parity (2011)
ppp550
Below $5.50 per day purchasing power parity (2011)
percentile20
Below 20th percentile poverty line
percentile40
Below 40th percentile poverty line
percentile60
Below 60th percentile poverty line
percentile80
Below 80th percentile poverty line
Examples
# Access Burkina Faso PPI table
ppiBFA2017
#> score nl100 nl150 nl200 ppp125 ppp250 ppp500 ppp100 ppp190 ppp320 ppp550
#> 1 0 97.5 99.6 99.9 94.5 99.7 100.0 56.1 98.1 99.8 100.0
#> 2 1 97.2 99.5 99.9 93.8 99.6 100.0 53.0 97.8 99.7 100.0
#> 3 2 96.8 99.4 99.9 93.1 99.5 100.0 49.8 97.6 99.7 100.0
#> 4 3 96.5 99.4 99.8 92.3 99.5 100.0 46.7 97.3 99.6 100.0
#> 5 4 96.0 99.3 99.8 91.3 99.4 100.0 43.5 96.9 99.6 100.0
#> 6 5 95.6 99.2 99.8 90.3 99.3 100.0 40.5 96.5 99.5 100.0
#> 7 6 95.0 99.1 99.7 89.2 99.2 100.0 37.5 96.1 99.5 100.0
#> 8 7 94.4 98.9 99.7 88.0 99.1 100.0 34.6 95.6 99.4 100.0
#> 9 8 93.8 98.8 99.7 86.6 98.9 100.0 31.8 95.1 99.3 99.9
#> 10 9 93.0 98.6 99.6 85.1 98.8 100.0 29.1 94.5 99.2 99.9
#> 11 10 92.2 98.4 99.6 83.5 98.6 100.0 26.6 93.9 99.1 99.9
#> 12 11 91.4 98.1 99.5 81.8 98.4 100.0 24.2 93.2 98.9 99.9
#> 13 12 90.4 97.9 99.4 79.9 98.1 100.0 21.9 92.4 98.8 99.9
#> 14 13 89.3 97.6 99.3 77.9 97.9 99.9 19.8 91.5 98.6 99.9
#> 15 14 88.1 97.2 99.2 75.7 97.5 99.9 17.9 90.5 98.4 99.9
#> 16 15 86.8 96.9 99.1 73.4 97.2 99.9 16.1 89.4 98.1 99.9
#> 17 16 85.4 96.4 99.0 70.9 96.7 99.9 14.5 88.2 97.9 99.8
#> 18 17 83.9 95.9 98.8 68.3 96.3 99.9 13.0 86.9 97.5 99.8
#> 19 18 82.2 95.4 98.7 65.6 95.7 99.9 11.6 85.5 97.2 99.8
#> 20 19 80.4 94.7 98.5 62.8 95.1 99.9 10.4 83.9 96.8 99.8
#> 21 20 78.5 94.0 98.3 59.9 94.4 99.9 9.3 82.3 96.3 99.7
#> 22 21 76.4 93.2 98.0 57.0 93.6 99.8 8.3 80.4 95.8 99.7
#> 23 22 74.2 92.3 97.7 54.0 92.7 99.8 7.4 78.5 95.2 99.6
#> 24 23 71.9 91.3 97.4 50.9 91.7 99.8 6.6 76.4 94.5 99.6
#> 25 24 69.5 90.1 97.0 47.9 90.5 99.7 5.8 74.2 93.7 99.5
#> 26 25 66.9 88.8 96.6 44.8 89.2 99.7 5.2 71.8 92.9 99.5
#> 27 26 64.2 87.4 96.1 41.9 87.8 99.7 4.6 69.3 91.9 99.4
#> 28 27 61.5 85.8 95.6 38.9 86.2 99.6 4.1 66.7 90.8 99.3
#> 29 28 58.6 84.1 95.0 36.1 84.4 99.5 3.6 64.0 89.5 99.2
#> 30 29 55.8 82.2 94.3 33.3 82.4 99.5 3.2 61.2 88.2 99.1
#> 31 30 52.8 80.2 93.5 30.6 80.2 99.4 2.8 58.3 86.6 98.9
#> 32 31 49.9 77.9 92.6 28.1 77.9 99.3 2.5 55.4 84.9 98.8
#> 33 32 46.9 75.5 91.6 25.7 75.3 99.2 2.2 52.4 83.0 98.6
#> 34 33 44.0 72.9 90.5 23.5 72.6 99.1 1.9 49.4 81.0 98.4
#> 35 34 41.1 70.2 89.2 21.3 69.7 99.0 1.7 46.4 78.7 98.2
#> 36 35 38.3 67.2 87.9 19.4 66.6 98.8 1.5 43.5 76.3 97.9
#> 37 36 35.5 64.2 86.3 17.5 63.3 98.6 1.3 40.6 73.7 97.6
#> 38 37 32.9 61.0 84.6 15.8 60.0 98.4 1.2 37.7 70.9 97.2
#> 39 38 30.3 57.8 82.7 14.3 56.5 98.2 1.0 34.9 68.0 96.8
#> 40 39 27.9 54.4 80.7 12.8 53.0 98.0 0.9 32.3 64.8 96.4
#> 41 40 25.6 51.0 78.4 11.5 49.4 97.7 0.8 29.7 61.6 95.9
#> 42 41 23.4 47.7 76.0 10.4 45.9 97.3 0.7 27.3 58.3 95.3
#> 43 42 21.3 44.3 73.4 9.3 42.4 96.9 0.6 25.0 54.8 94.6
#> 44 43 19.4 41.0 70.7 8.3 39.0 96.5 0.6 22.8 51.4 93.9
#> 45 44 17.6 37.8 67.8 7.4 35.6 96.0 0.5 20.8 47.9 93.0
#> 46 45 16.0 34.6 64.7 6.6 32.4 95.4 0.4 18.9 44.4 92.1
#> 47 46 14.5 31.6 61.5 5.9 29.4 94.8 0.4 17.1 41.0 91.0
#> 48 47 13.1 28.8 58.2 5.3 26.5 94.0 0.3 15.5 37.7 89.8
#> 49 48 11.8 26.1 54.8 4.7 23.9 93.2 0.3 14.0 34.5 88.4
#> 50 49 10.6 23.6 51.4 4.2 21.4 92.3 0.3 12.6 31.4 87.0
#> 51 50 9.5 21.2 48.0 3.7 19.1 91.2 0.2 11.3 28.5 85.3
#> 52 51 8.6 19.0 44.5 3.3 17.0 90.0 0.2 10.2 25.7 83.5
#> 53 52 7.7 17.0 41.2 2.9 15.1 88.7 0.2 9.1 23.1 81.5
#> 54 53 6.9 15.2 37.9 2.6 13.3 87.2 0.2 8.2 20.7 79.3
#> 55 54 6.2 13.5 34.7 2.3 11.8 85.6 0.1 7.3 18.5 76.9
#> 56 55 5.5 12.0 31.7 2.1 10.4 83.8 0.1 6.6 16.5 74.4
#> 57 56 4.9 10.7 28.8 1.8 9.1 81.8 0.1 5.9 14.7 71.7
#> 58 57 4.4 9.4 26.1 1.6 8.0 79.7 0.1 5.2 13.0 68.8
#> 59 58 3.9 8.3 23.5 1.4 7.0 77.3 0.1 4.7 11.5 65.7
#> 60 59 3.5 7.4 21.1 1.3 6.1 74.8 0.1 4.2 10.2 62.6
#> 61 60 3.1 6.5 18.9 1.1 5.4 72.1 0.1 3.7 9.0 59.3
#> 62 61 2.8 5.7 16.9 1.0 4.7 69.2 0.1 3.3 7.9 55.9
#> 63 62 2.5 5.0 15.1 0.9 4.1 66.2 0.1 2.9 6.9 52.4
#> 64 63 2.2 4.4 13.4 0.8 3.6 63.0 0.0 2.6 6.1 49.0
#> 65 64 2.0 3.9 11.9 0.7 3.1 59.7 0.0 2.3 5.3 45.5
#> 66 65 1.8 3.4 10.5 0.6 2.7 56.3 0.0 2.1 4.7 42.1
#> 67 66 1.6 3.0 9.3 0.5 2.4 52.9 0.0 1.8 4.1 38.8
#> 68 67 1.4 2.6 8.2 0.5 2.1 49.4 0.0 1.6 3.6 35.6
#> 69 68 1.2 2.3 7.2 0.4 1.8 45.9 0.0 1.5 3.1 32.5
#> 70 69 1.1 2.0 6.3 0.4 1.6 42.5 0.0 1.3 2.7 29.5
#> 71 70 1.0 1.8 5.6 0.3 1.4 39.1 0.0 1.2 2.4 26.7
#> 72 71 0.9 1.5 4.9 0.3 1.2 35.9 0.0 1.0 2.1 24.1
#> 73 72 0.8 1.3 4.3 0.3 1.0 32.7 0.0 0.9 1.8 21.7
#> 74 73 0.7 1.2 3.8 0.2 0.9 29.8 0.0 0.8 1.6 19.4
#> 75 74 0.6 1.0 3.3 0.2 0.8 26.9 0.0 0.7 1.4 17.3
#> 76 75 0.5 0.9 2.9 0.2 0.7 24.3 0.0 0.6 1.2 15.4
#> 77 76 0.5 0.8 2.5 0.2 0.6 21.8 0.0 0.6 1.0 13.7
#> 78 77 0.4 0.7 2.2 0.1 0.5 19.5 0.0 0.5 0.9 12.2
#> 79 78 0.4 0.6 1.9 0.1 0.4 17.5 0.0 0.4 0.8 10.7
#> 80 79 0.3 0.5 1.7 0.1 0.4 15.5 0.0 0.4 0.7 9.5
#> 81 80 0.3 0.5 1.5 0.1 0.3 13.8 0.0 0.4 0.6 8.4
#> 82 81 0.3 0.4 1.3 0.1 0.3 12.2 0.0 0.3 0.5 7.4
#> 83 82 0.2 0.4 1.1 0.1 0.2 10.8 0.0 0.3 0.5 6.5
#> 84 83 0.2 0.3 1.0 0.1 0.2 9.5 0.0 0.2 0.4 5.7
#> 85 84 0.2 0.3 0.9 0.1 0.2 8.4 0.0 0.2 0.3 5.0
#> 86 85 0.2 0.2 0.7 0.1 0.2 7.4 0.0 0.2 0.3 4.4
#> 87 86 0.1 0.2 0.7 0.0 0.1 6.5 0.0 0.2 0.3 3.8
#> 88 87 0.1 0.2 0.6 0.0 0.1 5.7 0.0 0.2 0.2 3.3
#> 89 88 0.1 0.2 0.5 0.0 0.1 5.0 0.0 0.1 0.2 2.9
#> 90 89 0.1 0.1 0.4 0.0 0.1 4.4 0.0 0.1 0.2 2.6
#> 91 90 0.1 0.1 0.4 0.0 0.1 3.8 0.0 0.1 0.1 2.2
#> 92 91 0.1 0.1 0.3 0.0 0.1 3.4 0.0 0.1 0.1 2.0
#> 93 92 0.1 0.1 0.3 0.0 0.1 2.9 0.0 0.1 0.1 1.7
#> 94 93 0.1 0.1 0.3 0.0 0.1 2.6 0.0 0.1 0.1 1.5
#> 95 94 0.1 0.1 0.2 0.0 0.0 2.2 0.0 0.1 0.1 1.3
#> 96 95 0.1 0.1 0.2 0.0 0.0 1.9 0.0 0.1 0.1 1.1
#> 97 96 0.0 0.1 0.2 0.0 0.0 1.7 0.0 0.1 0.1 1.0
#> 98 97 0.0 0.0 0.1 0.0 0.0 1.5 0.0 0.0 0.1 0.9
#> 99 98 0.0 0.0 0.1 0.0 0.0 1.3 0.0 0.0 0.0 0.8
#> 100 99 0.0 0.0 0.1 0.0 0.0 1.1 0.0 0.0 0.0 0.7
#> 101 100 0.0 0.0 0.1 0.0 0.0 1.0 0.0 0.0 0.0 0.6
#> percentile20 percentile40 percentile60 percentile80
#> 1 90.3 97.4 99.2 99.9
#> 2 89.1 97.1 99.1 99.9
#> 3 87.8 96.8 99.0 99.8
#> 4 86.4 96.4 98.9 99.8
#> 5 84.8 96.0 98.7 99.8
#> 6 83.1 95.5 98.6 99.8
#> 7 81.3 95.0 98.4 99.7
#> 8 79.3 94.4 98.2 99.7
#> 9 77.1 93.7 97.9 99.6
#> 10 74.8 93.0 97.6 99.6
#> 11 72.3 92.2 97.3 99.5
#> 12 69.7 91.3 96.9 99.4
#> 13 67.0 90.3 96.5 99.4
#> 14 64.1 89.2 96.1 99.3
#> 15 61.2 88.1 95.6 99.2
#> 16 58.1 86.8 95.0 99.0
#> 17 55.0 85.4 94.3 98.9
#> 18 51.8 83.9 93.6 98.7
#> 19 48.7 82.2 92.8 98.5
#> 20 45.5 80.5 91.9 98.3
#> 21 42.4 78.6 90.8 98.1
#> 22 39.3 76.5 89.7 97.8
#> 23 36.4 74.4 88.4 97.5
#> 24 33.5 72.1 87.0 97.1
#> 25 30.7 69.7 85.5 96.7
#> 26 28.1 67.1 83.8 96.3
#> 27 25.6 64.5 82.0 95.7
#> 28 23.3 61.8 80.0 95.1
#> 29 21.1 59.0 77.9 94.5
#> 30 19.0 56.1 75.6 93.7
#> 31 17.2 53.2 73.1 92.8
#> 32 15.4 50.3 70.5 91.9
#> 33 13.9 47.4 67.7 90.8
#> 34 12.4 44.5 64.8 89.6
#> 35 11.1 41.6 61.8 88.2
#> 36 9.9 38.8 58.7 86.7
#> 37 8.8 36.1 55.5 85.0
#> 38 7.9 33.4 52.3 83.2
#> 39 7.0 30.9 49.1 81.2
#> 40 6.2 28.4 45.9 79.0
#> 41 5.5 26.1 42.7 76.6
#> 42 4.9 23.9 39.5 74.0
#> 43 4.3 21.9 36.5 71.3
#> 44 3.8 19.9 33.5 68.4
#> 45 3.4 18.1 30.7 65.4
#> 46 3.0 16.5 28.0 62.2
#> 47 2.7 14.9 25.5 58.9
#> 48 2.3 13.5 23.1 55.5
#> 49 2.1 12.2 20.9 52.1
#> 50 1.8 11.0 18.8 48.7
#> 51 1.6 9.9 16.9 45.3
#> 52 1.4 8.9 15.2 41.9
#> 53 1.3 8.0 13.6 38.6
#> 54 1.1 7.2 12.2 35.4
#> 55 1.0 6.4 10.8 32.3
#> 56 0.9 5.8 9.6 29.4
#> 57 0.8 5.2 8.6 26.6
#> 58 0.7 4.6 7.6 24.0
#> 59 0.6 4.1 6.8 21.6
#> 60 0.5 3.7 6.0 19.3
#> 61 0.5 3.3 5.3 17.3
#> 62 0.4 2.9 4.7 15.4
#> 63 0.4 2.6 4.1 13.7
#> 64 0.3 2.3 3.7 12.1
#> 65 0.3 2.1 3.2 10.7
#> 66 0.2 1.9 2.8 9.5
#> 67 0.2 1.7 2.5 8.4
#> 68 0.2 1.5 2.2 7.4
#> 69 0.2 1.3 1.9 6.5
#> 70 0.1 1.2 1.7 5.7
#> 71 0.1 1.0 1.5 5.0
#> 72 0.1 0.9 1.3 4.4
#> 73 0.1 0.8 1.2 3.9
#> 74 0.1 0.7 1.0 3.4
#> 75 0.1 0.7 0.9 3.0
#> 76 0.1 0.6 0.8 2.6
#> 77 0.1 0.5 0.7 2.3
#> 78 0.1 0.5 0.6 2.0
#> 79 0.0 0.4 0.5 1.7
#> 80 0.0 0.4 0.5 1.5
#> 81 0.0 0.3 0.4 1.3
#> 82 0.0 0.3 0.4 1.1
#> 83 0.0 0.3 0.3 1.0
#> 84 0.0 0.2 0.3 0.9
#> 85 0.0 0.2 0.2 0.8
#> 86 0.0 0.2 0.2 0.7
#> 87 0.0 0.2 0.2 0.6
#> 88 0.0 0.1 0.2 0.5
#> 89 0.0 0.1 0.1 0.4
#> 90 0.0 0.1 0.1 0.4
#> 91 0.0 0.1 0.1 0.3
#> 92 0.0 0.1 0.1 0.3
#> 93 0.0 0.1 0.1 0.3
#> 94 0.0 0.1 0.1 0.2
#> 95 0.0 0.1 0.1 0.2
#> 96 0.0 0.1 0.1 0.2
#> 97 0.0 0.1 0.1 0.1
#> 98 0.0 0.0 0.0 0.1
#> 99 0.0 0.0 0.0 0.1
#> 100 0.0 0.0 0.0 0.1
#> 101 0.0 0.0 0.0 0.1
# Given a specific PPI score (from 0 - 100), get the row of poverty
# probabilities from PPI table it corresponds to
ppiScore <- 50
ppiBFA2017[ppiBFA2017$score == ppiScore, ]
#> score nl100 nl150 nl200 ppp125 ppp250 ppp500 ppp100 ppp190 ppp320 ppp550
#> 51 50 9.5 21.2 48 3.7 19.1 91.2 0.2 11.3 28.5 85.3
#> percentile20 percentile40 percentile60 percentile80
#> 51 1.6 9.9 16.9 45.3
# Use subset() function to get the row of poverty probabilities corresponding
# to specific PPI score
ppiScore <- 50
subset(ppiBFA2017, score == ppiScore)
#> score nl100 nl150 nl200 ppp125 ppp250 ppp500 ppp100 ppp190 ppp320 ppp550
#> 51 50 9.5 21.2 48 3.7 19.1 91.2 0.2 11.3 28.5 85.3
#> percentile20 percentile40 percentile60 percentile80
#> 51 1.6 9.9 16.9 45.3
# Given a specific PPI score (from 0 - 100), get a poverty probability
# based on a specific poverty definition. In this example, the national
# poverty line definition
ppiScore <- 50
ppiBFA2017[ppiBFA2017$score == ppiScore, "nl100"]
#> [1] 9.5