Skip to contents

Poverty Probability Index (PPI) lookup table for Angola

Usage

ppiAGO2015

Format

A data frame with 9 columns and 101 rows:

score

PPI score

nl100

National poverty line (100%)

nl150

National poverty line (150%)

nl200

National poverty line (200%)

half100

Poorest half below 100% national

ppp125

Below $1.25 per day purchasing power parity (2005)

ppp200

Below $2.00 per day purchasing power parity (2005)

ppp250

Below $2.50 per day purchasing power parity (2005)

ppp500

Below $5.00 per day purchasing power parity (2005)

Examples

  # Access Angola PPI table
  ppiAGO2015
#>     score nl100 nl150 nl200 half100 ppp125 ppp200 ppp250 ppp500
#> 0       0 100.0 100.0 100.0    86.5  100.0  100.0  100.0  100.0
#> 1       1 100.0 100.0 100.0    86.5  100.0  100.0  100.0  100.0
#> 2       2 100.0 100.0 100.0    86.5  100.0  100.0  100.0  100.0
#> 3       3 100.0 100.0 100.0    86.5  100.0  100.0  100.0  100.0
#> 4       4 100.0 100.0 100.0    86.5  100.0  100.0  100.0  100.0
#> 5       5 100.0 100.0 100.0    80.9  100.0  100.0  100.0  100.0
#> 6       6 100.0 100.0 100.0    80.9  100.0  100.0  100.0  100.0
#> 7       7 100.0 100.0 100.0    80.9  100.0  100.0  100.0  100.0
#> 8       8 100.0 100.0 100.0    80.9  100.0  100.0  100.0  100.0
#> 9       9 100.0 100.0 100.0    80.9  100.0  100.0  100.0  100.0
#> 10     10  98.9  99.4 100.0    79.1   99.3  100.0  100.0  100.0
#> 11     11  98.9  99.4 100.0    79.1   99.3  100.0  100.0  100.0
#> 12     12  98.9  99.4 100.0    79.1   99.3  100.0  100.0  100.0
#> 13     13  98.9  99.4 100.0    79.1   99.3  100.0  100.0  100.0
#> 14     14  98.9  99.4 100.0    79.1   99.3  100.0  100.0  100.0
#> 15     15  97.9  98.8 100.0    75.7   98.8  100.0  100.0  100.0
#> 16     16  97.9  98.8 100.0    75.7   98.8  100.0  100.0  100.0
#> 17     17  97.9  98.8 100.0    75.7   98.8  100.0  100.0  100.0
#> 18     18  97.9  98.8 100.0    75.7   98.8  100.0  100.0  100.0
#> 19     19  97.9  98.8 100.0    75.7   98.8  100.0  100.0  100.0
#> 20     20  86.1  97.8  99.9    56.0   94.1   99.9  100.0  100.0
#> 21     21  86.1  97.8  99.9    56.0   94.1   99.9  100.0  100.0
#> 22     22  86.1  97.8  99.9    56.0   94.1   99.9  100.0  100.0
#> 23     23  86.1  97.8  99.9    56.0   94.1   99.9  100.0  100.0
#> 24     24  86.1  97.8  99.9    56.0   94.1   99.9  100.0  100.0
#> 25     25  78.8  95.7  99.0    44.1   87.7   99.0   99.5  100.0
#> 26     26  78.8  95.7  99.0    44.1   87.7   99.0   99.5  100.0
#> 27     27  78.8  95.7  99.0    44.1   87.7   99.0   99.5  100.0
#> 28     28  78.8  95.7  99.0    44.1   87.7   99.0   99.5  100.0
#> 29     29  78.8  95.7  99.0    44.1   87.7   99.0   99.5  100.0
#> 30     30  68.0  92.2  97.8    29.1   78.7   97.0   98.4  100.0
#> 31     31  68.0  92.2  97.8    29.1   78.7   97.0   98.4  100.0
#> 32     32  68.0  92.2  97.8    29.1   78.7   97.0   98.4  100.0
#> 33     33  68.0  92.2  97.8    29.1   78.7   97.0   98.4  100.0
#> 34     34  68.0  92.2  97.8    29.1   78.7   97.0   98.4  100.0
#> 35     35  59.3  87.7  96.0    16.5   70.1   93.8   96.6  100.0
#> 36     36  59.3  87.7  96.0    16.5   70.1   93.8   96.6  100.0
#> 37     37  59.3  87.7  96.0    16.5   70.1   93.8   96.6  100.0
#> 38     38  59.3  87.7  96.0    16.5   70.1   93.8   96.6  100.0
#> 39     39  59.3  87.7  96.0    16.5   70.1   93.8   96.6  100.0
#> 40     40  40.0  76.1  88.2    13.0   52.0   86.4   92.7   99.8
#> 41     41  40.0  76.1  88.2    13.0   52.0   86.4   92.7   99.8
#> 42     42  40.0  76.1  88.2    13.0   52.0   86.4   92.7   99.8
#> 43     43  40.0  76.1  88.2    13.0   52.0   86.4   92.7   99.8
#> 44     44  40.0  76.1  88.2    13.0   52.0   86.4   92.7   99.8
#> 45     45  29.5  62.1  81.6     6.2   39.8   79.7   89.8   98.4
#> 46     46  29.5  62.1  81.6     6.2   39.8   79.7   89.8   98.4
#> 47     47  29.5  62.1  81.6     6.2   39.8   79.7   89.8   98.4
#> 48     48  29.5  62.1  81.6     6.2   39.8   79.7   89.8   98.4
#> 49     49  29.5  62.1  81.6     6.2   39.8   79.7   89.8   98.4
#> 50     50  10.0  44.5  69.9     3.5   19.1   64.1   80.4   97.4
#> 51     51  10.0  44.5  69.9     3.5   19.1   64.1   80.4   97.4
#> 52     52  10.0  44.5  69.9     3.5   19.1   64.1   80.4   97.4
#> 53     53  10.0  44.5  69.9     3.5   19.1   64.1   80.4   97.4
#> 54     54  10.0  44.5  69.9     3.5   19.1   64.1   80.4   97.4
#> 55     55   5.6  32.3  62.5     1.2   12.4   53.8   73.4   96.9
#> 56     56   5.6  32.3  62.5     1.2   12.4   53.8   73.4   96.9
#> 57     57   5.6  32.3  62.5     1.2   12.4   53.8   73.4   96.9
#> 58     58   5.6  32.3  62.5     1.2   12.4   53.8   73.4   96.9
#> 59     59   5.6  32.3  62.5     1.2   12.4   53.8   73.4   96.9
#> 60     60   4.6  30.9  55.9     1.1   10.4   49.8   65.9   94.8
#> 61     61   4.6  30.9  55.9     1.1   10.4   49.8   65.9   94.8
#> 62     62   4.6  30.9  55.9     1.1   10.4   49.8   65.9   94.8
#> 63     63   4.6  30.9  55.9     1.1   10.4   49.8   65.9   94.8
#> 64     64   4.6  30.9  55.9     1.1   10.4   49.8   65.9   94.8
#> 65     65   4.4  18.5  55.9     1.1    7.5   45.0   62.5   94.8
#> 66     66   4.4  18.5  55.9     1.1    7.5   45.0   62.5   94.8
#> 67     67   4.4  18.5  55.9     1.1    7.5   45.0   62.5   94.8
#> 68     68   4.4  18.5  55.9     1.1    7.5   45.0   62.5   94.8
#> 69     69   4.4  18.5  55.9     1.1    7.5   45.0   62.5   94.8
#> 70     70   4.4  18.5  33.4     1.1    7.5   28.1   42.1   93.9
#> 71     71   4.4  18.5  33.4     1.1    7.5   28.1   42.1   93.9
#> 72     72   4.4  18.5  33.4     1.1    7.5   28.1   42.1   93.9
#> 73     73   4.4  18.5  33.4     1.1    7.5   28.1   42.1   93.9
#> 74     74   4.4  18.5  33.4     1.1    7.5   28.1   42.1   93.9
#> 75     75   4.4  18.5  33.4     1.1    7.5   28.1   42.1   84.7
#> 76     76   4.4  18.5  33.4     1.1    7.5   28.1   42.1   84.7
#> 77     77   4.4  18.5  33.4     1.1    7.5   28.1   42.1   84.7
#> 78     78   4.4  18.5  33.4     1.1    7.5   28.1   42.1   84.7
#> 79     79   4.4  18.5  33.4     1.1    7.5   28.1   42.1   84.7
#> 80     80   4.4  18.5  33.4     1.1    7.5   28.1   42.1   80.9
#> 81     81   4.4  18.5  33.4     1.1    7.5   28.1   42.1   80.9
#> 82     82   4.4  18.5  33.4     1.1    7.5   28.1   42.1   80.9
#> 83     83   4.4  18.5  33.4     1.1    7.5   28.1   42.1   80.9
#> 84     84   4.4  18.5  33.4     1.1    7.5   28.1   42.1   80.9
#> 85     85   4.4  18.5  33.4     1.1    7.5   28.1   42.1   80.9
#> 86     86   4.4  18.5  33.4     1.1    7.5   28.1   42.1   80.9
#> 87     87   4.4  18.5  33.4     1.1    7.5   28.1   42.1   80.9
#> 88     88   4.4  18.5  33.4     1.1    7.5   28.1   42.1   80.9
#> 89     89   4.4  18.5  33.4     1.1    7.5   28.1   42.1   80.9
#> 90     90   4.4  18.5  33.4     1.1    7.5   28.1   42.1   80.9
#> 91     91   4.4  18.5  33.4     1.1    7.5   28.1   42.1   80.9
#> 92     92   4.4  18.5  33.4     1.1    7.5   28.1   42.1   80.9
#> 93     93   4.4  18.5  33.4     1.1    7.5   28.1   42.1   80.9
#> 94     94   4.4  18.5  33.4     1.1    7.5   28.1   42.1   80.9
#> 95     95   4.4  18.5  33.4     1.1    7.5   28.1   42.1   80.9
#> 96     96   4.4  18.5  33.4     1.1    7.5   28.1   42.1   80.9
#> 97     97   4.4  18.5  33.4     1.1    7.5   28.1   42.1   80.9
#> 98     98   4.4  18.5  33.4     1.1    7.5   28.1   42.1   80.9
#> 99     99   4.4  18.5  33.4     1.1    7.5   28.1   42.1   80.9
#> 100   100   4.4  18.5  33.4     1.1    7.5   28.1   42.1   80.9

  # Given a specific PPI score (from 0 - 100), get the row of poverty
  # probabilities from PPI table it corresponds to
  ppiScore <- 50
  ppiAGO2015[ppiAGO2015$score == ppiScore, ]
#>    score nl100 nl150 nl200 half100 ppp125 ppp200 ppp250 ppp500
#> 50    50    10  44.5  69.9     3.5   19.1   64.1   80.4   97.4

  # Use subset() function to get the row of poverty probabilities corresponding
  # to specific PPI score
  ppiScore <- 50
  subset(ppiAGO2015, score == ppiScore)
#>    score nl100 nl150 nl200 half100 ppp125 ppp200 ppp250 ppp500
#> 50    50    10  44.5  69.9     3.5   19.1   64.1   80.4   97.4

  # Given a specific PPI score (from 0 - 100), get a poverty probability
  # based on a specific poverty definition. In this example, the national
  # poverty line definition
  ppiScore <- 50
  ppiAGO2015[ppiAGO2015$score == ppiScore, "extreme"]
#> NULL